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Abstract
This paper deals with the problem of batch steganography and

pooled steganalysis when the sender uses a steganography detec-

tor to spread chunks of the payload across a bag of cover images

while the Warden uses a possibly different detector for her pooled

steganalysis. We investigate how much information can be commu-

nicated with increasing bag size 𝑛 at a fixed statistical detectability

of Warden’s detector. Specifically, we are interested in the scaling

exponent 𝛾 of the secure payload 𝑃 (𝑛) = 𝑐𝑛𝛾 . We approach this

problem both theoretically from a statistical model of the soft out-

put of a detector and practically using experiments on real datasets

when giving both actors different detectors implemented as convo-

lutional neural networks and a classifier with a rich model. While

the effect of the detector mismatch depends on the payload alloca-

tion algorithm and the type of mismatch, in general the mismatch

decreases the constant of proportionality 𝑐 as well as the exponent

𝛾 . This stays true independently of who has the superior detector.

Many trends observed in experiments qualitatively match the theo-

retical predictions derived within our model. Finally, we summarize

our most important findings as lessons for the sender and for the

Warden.
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1 Introduction
In batch steganography and pooled steganalysis [13], the sender

(Alice) spreads her secret payload across a bag of images to decrease

the chances of being caught while the Warden inspects all images
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in the bag to detect the use of steganography. Recognizing that

detectability of steganographic embedding strongly depends on

image content, in the past researchers looked at various payload

spreading strategies that assign payload chunks to images based

on content complexity. For instance, the Image Merging Sender

(IMS) [18] considers a bag of cover images as a single image and

spreads payload by embedding this larger “image” using a content-

adaptive steganographic algorithm. Recently, payload spreading

strategies have been proposed that make use of a trained detector.

They include the Minimum Deflection Sender (MDS) [20], the Shift

Limited Sender (SLS) [20], and the greedy sender [8]. All three in

some way assign the largest payload to images that, when embed-

ded, elicit the smallest detector response.

In this paper, we study how much information Alice can send in

bags of increasing size 𝑛 as 𝑛 → ∞. Since in practice Alice is un-

likely to use very large bags, perhaps a more sensible interpretation

of our research goal is addressing the question of how Alice should

adjust her payload over 𝑛 uses of the stego channel to stay within

a limited risk of being detected. The most closely related prior art

is [8], where the authors studied this problem primarily for the

case when Alice and the Warden share the same detector, which

Alice uses for payload allocation and the Warden for detection.

The secure payload size 𝑃 (𝑛) that guarantees constant statistical
detectability was observed to scale as 𝑃 (𝑛) ∝ 𝑛𝛾 with 𝛾 ≈ 0.85 for

bag sizes up to 𝑛 = 16, 000. This surprising super-square root law

(SRL) [15] scaling was attributed to the fact that in the dataset used

by the authors (spatial domain ALASKA II [5]) a non-negligible

fraction of images appear to have a vanishing response to embed-

ding in terms of a detector’s soft output, an observation the authors

conjecture holds for all typical image datasets.

While the main focus of this prior art was the matched detector

case, the authors did provide some limited results on scaling when

Alice spreads her payload with a different detector than the one

used by the Warden for detection (the mismatched detector case).

The detectors were implemented as two different architectures of

a convolutional neural network (CNN). The experiments revealed

that, depending on the payload spreading strategy and Warden’s

pooler, the secure payload may follow the same super SRL scaling

but could also exhibit an exponent strictly smaller than 0.80.

The current paper begins where this prior art ends. Our goal is a

more detailed study of the secure payload scaling when both actors

use different detectors. We experiment with three types of state-

of-the-art CNNs and a classifier based on the spatial rich model

(SRM) [10], and study the scaling for all mismatched as well as

matched cases. To explain the trends observed in experiments, we

formalize and quantify detector mismatch mathematically within
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a statistical model of the soft output of a detector in a way that

is relevant to secure payload scaling. A scalar detector-mismatch

parameter 𝜃 ≥ 0 is introduced to quantify the drop in the scaling

exponent 𝛾 due to the mismatch. We explain how this parameter

can be estimated in practice and show that it can predict the impact

of detector mismatch on the scaling.

The paper is structured as follows. In the next section, we intro-

duce notational conventions and a list of commonly used abbrevia-

tions and acronyms. Section 3 contains the details of two payload

spreading strategies used by Alice for batch steganography that

will be studied in this paper. In Section 4, we adopt a statistical

model of the soft output of Warden’s detector and derive the most

powerful pooler for pooled steganalysis. The concepts of secure

payload and a detectability limited sender (DLS) are formalized in

Section 5, including the implementation details of the DLS. The

scaling of secure payload with matched and mismatched detectors

is theoretically analyzed within our model in Section 6. Based on

this analysis, we introduce the detector mismatch parameter and

explain how it affects the scaling of secure payload. The setup of our

experiments, including the datasets, detector training, and other

implementation details are described in Section 7. All experimental

results are presented and contrasted with the theoretical analysis in

Section 8. After discussing the implications of our findings to Alice

and the Warden in Section 9, the paper is concluded in Section 10.

2 Notation
Throughout the paper, cover images are denoted with 𝑋 , while

images intercepted by the Warden (either cover or stego) are repre-

sented with the symbol 𝑌 . Boldface symbols are used for 𝑛-tuples

of objects. In particular, a bag of 𝑛 cover images will be denoted

X = (𝑋1, . . . , 𝑋𝑛) while a bag intercepted by the Warden will be

denoted Y = (𝑌1, . . . , 𝑌𝑛). Both Alice and the Warden use a single-

image detector (SID) 𝑑 to achieve their respective goals. Through-

out this paper, the superscripts ’A’ and ’W’ will be used for quan-

tities and objects that depend on Alice’s and Warden’s detector,

respectively. Alice uses 𝑑A to spread her payload while the Warden

uses 𝑑W to detect steganography. Formally, a SID is a mapping

𝑑 : X → R, where X is the space of all images. When 𝑑 is a trained

CNN, we use its stego logit as the soft output. For a detector imple-

mented as an LCLC classifier [6] with a rich model, the soft output

is the projection of the rich feature on the weight vector.

A real valued random variable 𝑍 restricted to interval [𝑎, 𝑏] will
be denoted 𝑍 [𝑎, 𝑏]. Gaussian random variable with mean 𝜇 and

variance 𝜎2 will be denoted N(𝜇, 𝜎2), while𝑈 [𝑎, 𝑏] stands for the
uniform random variable on [𝑎, 𝑏].

Common abbreviations and acronyms: SRM = spatial rich model,

RC = response curve, SID = single image detector, SLS = shift limited

sender, bpp = bits per pixel, DLS = detectability limited sender, PLS

= payload limited sender, CNN = convolutional neural network,

WLOG = without loss of generality.

3 Detector-informed batch steganography
In this section, we describe how Alice uses her detector to allocate

payload chunks to individual images in the bag. She uses detec-

tor feedback for this task based on how her detector responds to

embedding in a given cover image.

3.1 Response curve
Let𝐶 be the maximum embedding capacity of a cover image𝑋 ∈ X.

For example, for a ternary embedding scheme in the spatial domain,

𝐶 ≤ log
2
3 bits per pixel (bpp). Given a cover image 𝑋 , detector 𝑑A,

and an embedding scheme, the response curve (RC) is the function

𝜚A : [0,𝐶] → R defined by

𝜚A (𝛼) = E[𝑑A (𝑋 (𝛼 ;𝐾))], 0 ≤ 𝛼 ≤ 𝐶, (1)

where 𝑋 (𝛼 ;𝐾) is 𝑋 embedded with a secret message of relative

length 𝛼 bpp and stego key𝐾 . The expectation is taken over random

messages and stego keys. Furthermore, we define the (expected)

shift of the detector response

𝑠A (𝛼) = 𝜚A (𝛼) − 𝜚A (0) . (2)

Note that the RC and the shift depend on the image, the detector,

and the embedding scheme.

3.2 Payload spreading
In this paper, we consider two payload spreading strategies (senders)

that make use of the RCs. The SLS and greedy senders were selected

because they are computationally inexpensive, which is important

since we run experiments with bags consisting of thousands of

images for a wide range of bag sizes and various combinations of

detectors. The greedy sender has been included mainly because it

is easier to analyze mathematically. As will be seen later in this

paper, it is overly aggressive with its payload assignment and is

thus very sensitive to detector mismatch.

Let us assume that the sender has a bag of 𝑛 cover images

𝑋1, . . . , 𝑋𝑛 with embedding capacities 0 ≤ 𝐶𝑖 ≤ log
2
3 bpp. WLOG,

let us assume that the images are ordered by their detector shifts

at capacity 𝑠A
1
(𝐶1) ≤ · · · ≤ 𝑠A𝑛 (𝐶𝑛). Let 𝑃 ∈

[
0,
∑𝑛

𝑖=1𝐶𝑖

]
bpp be the

total payload the sender wants to communicate in the bag and 𝑘 be

the largest integer for which

∑𝑘
𝑖=1𝐶𝑖 < 𝑃 . The greedy sender fully

embeds images 𝑋1, . . . , 𝑋𝑘 with 𝛼𝑖 = 𝐶𝑖 while 𝑋𝑘+1 holds the last
chunk 𝛼𝑘+1 = 𝑃 −∑𝑘

𝑖=1𝐶𝑖 bpp and 𝑋𝑘+2, . . . , 𝑋𝑛 are left empty.

The shift limited sender (SLS) [20] finds the smallest 𝛿 > 0 that

leads to the same expected detector output shift when embedding

payload 𝛼𝑖 in 𝑋𝑖 , satisfying
∑𝑛

𝑖=1 𝛼𝑖 = 𝑃 , and 𝛿 = 𝑠A𝑖 (𝛼𝑖 ) for all 𝑖
for which 𝑠A𝑖 (𝐶𝑖 ) ≥ 𝛿 . For images that do not satisfy this condition

(e. g., images with “flat” response curves), the SLS sets 𝛼𝑖 =𝐶𝑖 . In

other words, SLS enforces the shift hypothesis [13].

In the rare case when the RC of an image is not monotonically

increasing, the greedy sender uses the absolute value |𝑠A𝑖 (𝛼) | and
SLS uses the cumulative max of |𝑠A𝑖 (𝛼) | in their implementations.

4 Warden’s pooler
In this section, we explain in detail the pooled steganalysis executed

by the Warden. To this end, we impose a statistical model on the

soft output of her detector, which allows us to derive the most

powerful pooler within the adopted model.

Having intercepted a bag of 𝑛 images Y = (𝑌1, . . . , 𝑌𝑛), the War-

den applies 𝑑W to each 𝑌𝑖 and then pools 𝑑W (𝑌𝑖 ), 𝑖 = 1, . . . , 𝑛 with

a pooler 𝜋 : R𝑛 → R, arriving at 𝜋 (𝑑W (𝑌1), . . . , 𝑑W (𝑌𝑛)) as her
detection statistic. For brevity, we will slightly abuse notation using

𝜋 (Y) = 𝜋 (𝑑W (𝑌1), . . . , 𝑑W (𝑌𝑛)).
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We will assume that sampling covers from X is a two-stage

process. First, Alice selects a “scene” and then acquires it with a

digital camera. If she were to take multiple images of the exact same

scene, they would slightly differ due to the sensor noise but will

generally concentrate around the noise-free version of the scene.

To avoid the complexity of modeling the images themselves, we

instead model the soft outputs of Warden’s detector as in [7].

4.1 Statistical model
Given the scene of the 𝑖th cover image, we model the distribution

of detector outputs on acquisitions 𝑋𝑖 of this scene as

𝑑W (𝑋𝑖 ) ∼ N (𝜇𝑖 , 𝜎2). (3)

Since the acquisitions are concentrated on a small subset of X, 𝑑W

will be approximately linear on such small neighborhoods, the Gaus-

sianity can be heuristically justified by the central limit theorem at

least for the case of RAW captures where the acquisition noise is

independent across pixels. While the variance of the response, 𝜎2 ,

is generally a function of the image 𝑋𝑖 , we assume it is constant to

simplify the modeling. The reader is referred to [20] and [7] for a

more in-depth discussion of these modeling assumptions.

Since stego schemes strive to preserve statistical properties of

𝑋𝑖 , the embedding process will also preserve the concentration.

Therefore, by the same argument we assume that the detector

output on the stego image embedded with relative payload 𝛼𝑖 bits

per pixel (bpp), 𝑑W (𝑋𝑖 (𝛼𝑖 )), is also Gaussian

𝑑W (𝑋𝑖 (𝛼𝑖 )) ∼ N (𝜇𝑖 + 𝑠W𝑖 (𝛼𝑖 ), 𝜎2). (4)

Note that we assume only the mean is affected by embedding

but not the variance. This local shift hypothesis is a much weaker

assumption than the shift hypothesis [18] about the distribution of

detector response across scenes which is not satisfied for modern

steganalyzers built with machine learning (see, e. g., Sec. 3.2 in [20]).

4.2 Warden’s hypothesis test
Given a bag of intercepted imagesY = (𝑌1, . . . , 𝑌𝑛) theWarden faces

the following hypothesis test assuming the 𝑑W (𝑌𝑖 ) are independent
random variables:

H0 : 𝑑W (𝑌𝑖 ) ∼ N (𝜇𝑖 , 𝜎2) for all 𝑖

H1 : 𝑑W (𝑌𝑖 ) ∼ N (𝜇𝑖 + 𝑠W𝑖 (𝛼𝑖 ), 𝜎2) for all 𝑖,
(5)

where 𝛼𝑖 is the relative payload potentially residing in the 𝑖th image

𝑌𝑖 and 𝑠
W

𝑖 (𝛼𝑖 ) = 𝜚W𝑖 (𝛼𝑖 ) − 𝜚W𝑖 (0). Assuming the parameters of the

distributions in the hypothesis test (5) are known to the Warden

(this includes the payloads 𝛼𝑖 and shifts 𝑠W𝑖 (𝛼𝑖 )), the test becomes

simple and, due to the independence, the Warden’s most powerful

pooled detector is the correlator

𝜋corr (Y) =
𝑛∑︁
𝑖=1

𝑑W (𝑌𝑖 )𝑠W𝑖 (𝛼𝑖 ). (6)

The detectability of steganography is then determined by the

deflection coefficient

Δ2 =
1

𝜎2

𝑛∑︁
𝑖=1

(𝑠W𝑖 (𝛼𝑖 ))2 . (7)

5 Secure payload
In this section, we define the concept of secure payload and describe

a detectability-limited sender (DLS) that will be studied in this paper.

This material closely follows Section Secure Payload from [8], hence

we include only a condensed description and refer the reader to the

original publication for more details.

Given a fixed steganographic scheme and spreading strategy, we

define the secure payload of a bag of size 𝑛 at detectability 𝛿 ≥ 0,

𝑃𝛿 (𝑛), as the largest total payload 𝑃 that can be communicated in a

bag of 𝑛 images that satisfies

E[Δ2] ≤ 𝛿, (8)

where the expectation is taken over all bags of size 𝑛 sampled

independently from the cover source.

5.1 Detectability-limited sender
Adetectability-limited sender adjusts the payload in the bag in order

to satisfy (8). Given a desired statistical detectability 𝛿 ≥ 0 for the

Warden’s pooler 𝜋 and bag size 𝑛, a DLS determines the maximal

secure payload size 𝑃𝛿 (𝑛). In experiments, we use an empirical

measure of detectability in the form of Warden’s minimum total

average error probability 𝑃E = min
1

2
(𝑃FA + 𝑃MD), where 𝑃D and

𝑃FA are the detector’s power and false alarm rate, respectively.

The DLS used in this paper is specifically an empirical DLS; it

fixes detectability across a collection of 𝑁 bags rather than de-

tectability within a statistical model of a specific bag. To achieve a

fixed detectability across 𝑁 bags, we use a payload-limited sender

to solve for the total payload that achieves the desired detectability

𝛿 . This is implemented as a binary search for 𝑃𝛿 (𝑛). Note that a DLS
implemented this way embeds the same payload 𝑃𝛿 (𝑛) in every bag

while a DLS that fixes detectability based on the statistical model

of each bag would embed variable payloads depending on the bag.

The binary search looks for payload size 𝑃 bpp that elicits a cho-

sen 𝑃E for Warden’s pooler on bags of size 𝑛. The images in bags are

sampled without replacement and then payload 𝑃 is embedded us-

ing a spreading strategy. Each stego image𝑋𝑖 (𝛼𝑖 ) was generated us-
ing a random key, producing the stego bag X(𝜶 ). Warden’s pooled

detector is then applied to both cover and stego bags, yielding 𝜋 (X)
and 𝜋 (X(𝜶 )) respectively. Repeating these steps for each of the 𝑁

bags, we compute the empirical detectability 𝑃E (𝑃, 𝑛, 𝑁 ) from the

collection of 2𝑁 data points

{
𝜋 (X(𝑚) )), 𝜋 (X(𝑚) (𝜶 (𝑚) ))

}𝑁
𝑚=1

where

the superscript (𝑚) signifies the𝑚th sample cover / stego bag. The

search ultimately solves for the payload 𝑃 such that 𝑃E (𝑃, 𝑛, 𝑁 ) = 𝛿 .
We denote the payload found this way by 𝑃𝛿 (𝑛), omitting the depen-

dence on 𝑁 since 𝑃E (𝑃, 𝑛, 𝑁 ) converges to a limit for large enough

𝑁 .

5.2 Simulating the DLS
Implementing the DLS described above is rather expensive as it

involves running the embedding simulator and computing forward

passes of Warden’s detector for𝑂 (𝑁 ×𝑛) images per iteration of the

binary search. Since we wish to study a wide variety of mismatched

detectors, this further increases the computational demands. To

speed up our experiments, instead of actually embedding the cover

images and applying the detector to them, we merely sampled the

Gaussian model of the images’ RCs (4) in a Monte Carlo fashion.
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As shown in Figure 4 in the original publication [8], this simulation

gives essentially the same results in terms of scaling of the secure

payload as executing the DLS as described in the previous section.

6 Effect of detector mismatch on scaling
Modeling a mismatch between two detectors is generally difficult

and even ill posed since the mismatch can have many forms and

practical consequences. In this paper, we model the mismatch in

a way that reflects our goal, which is to study its impact on se-

cure payload scaling. To explain our reasoning and motivate our

approach, we first review a relevant result from [8]. As in this prior

art, we restrict our study to the greedy sender because the results

are available in a closed form as one only needs to adopt a model for

detector shifts at capacity 𝑠W𝑖 (𝐶𝑖 ). To carry out a similar analysis

for the SLS, it would be necessary to model the entire response

curves.

For simplicity and WLOG, we will assume that 𝜎2 = 1 and that

the embedding capacity of all images is the same, 𝐶𝑖 =𝐶 = log
2
3

for all 𝑖 . Finally, we will ignore the contribution of the last partially

embedded image to the deflection as this will become negligible as

𝑛 tends to infinity.

We begin with adopting a model of the square detector shift at

capacity, (𝑠W𝑖 (𝐶))2, when sampling the image space X according

to the cover distribution:

(𝑠W𝑖 (𝐶))2 ∼ 𝐹W, (9)

where 𝐹W is a cumulative distribution function (CDF) supported on

[0,∞). We will assume that 𝐹W (𝑥) > 0 for 𝑥 > 0 and that it is con-

tinuous and invertible on some right neighborhood of zero. Note

that 𝐹W generally depends on the cover source, steganographic

method, and Warden’s detector, as also highlighted by the super-

script ’W’.

6.1 Matched detectors case
The following secure payload scaling theorem has been proved for

the case of matched detectors in [8].

Theorem 6.1. The secure payload of the greedy sender for bag size
𝑛 and detectability 𝛿 > 0 is

𝑃𝛿 (𝑛) = log
2
3 × 𝑘 (𝑛) (bpp), (10)

where𝑘 (𝑛) is the largest integer satisfying𝑛×
∫ 𝑘 (𝑛)/𝑛
0

(𝐹W)−1 (𝑥)d𝑥 ≤
𝛿 . Moreover, when 𝐹W (𝑥) ∝ 𝑥𝛽 , 𝛽 > 0, on some right neighborhood
of 0, 𝑃𝛿 (𝑛) ∝ 𝑛𝛾 ,

𝛾 (𝛽) = 1

1 + 𝛽 . (11)

In this paper, we draw inspiration from the proof of this result,

specifically from the following Lemma proved in the Appendix [8].

Consider 𝑛 i.i.d. random variables 𝑍𝑖 ∼ 𝐹W as well as the 𝑘th

order statistic of the 𝑍𝑖 , denoted by 𝑍 (𝑖 ) . Suppose that 𝑘 = 𝑘 (𝑛)
is some function of 𝑛 satisfying 𝑐𝑛1/2 ≤ 𝑘 (𝑛) (secure payload is

at least ∝ 𝑛1/2) for some 𝑐 > 0 and 𝑘 (𝑛)/𝑛 → 0 (secure payload

is sublinear) as 𝑛 → ∞. Then, 𝐹 (𝑍 (𝑘 ) ) 𝑛+1
𝑘 (𝑛) → 1 in probability as

𝑛 → ∞ and 𝐹W (𝑍 (𝑖 ) ), 1 ≤ 𝑖 ≤ 𝑘 (𝑛), are uniform on [0, 𝑘 (𝑛)/𝑛] :

𝐹W (𝑍 (𝑖 ) ) ∼ 𝑈 [0, 𝑘 (𝑛)/𝑛] . (12)

This result serves as the starting point for modeling the detector

mismatch below.

6.2 Mismatched detectors
The greedy sender implemented by Alice embeds the payload in

𝑘 (𝑛) images with the smallest shifts (𝑠A𝑖 (𝐶))2 w.r.t. her detector 𝑑A.
When the detectors are mismatched, however, these images do not

need to have the smallest shift w.r.t. 𝑑W. The more mismatched the

detectors are, the more likely Alice is to embed in images that rank

in terms of theWarden detector shifts (𝑠W𝑖 (𝐶))2 very differently. Let
𝑋 [𝑖 ] be the cover images in the bag ordered by (𝑠A𝑖 (𝐶))2 from the

smallest to the largest. Due to the mismatch,𝑋 [𝑖 ] no longer coincide
with Warden’s order statistics 𝑋 (𝑖 ) when ordering the images by

(𝑠W𝑖 (𝐶))2. We model this detector mismatch mathematically by

claiming that 𝐹W
(
(𝑠W[𝑖 ] (𝐶))

2

)
for 𝑖 = 1, . . . , 𝑘 (𝑛) are sampled by

Alice independently and uniformly from a larger interval (c. f., (12))

𝐹W
(
(𝑠W[𝑖 ] (𝐶))

2

)
∼ 𝑈 [0, 𝑛𝜃𝑘 (𝑛)/𝑛], (13)

where the scalar 𝜃 ≥ 0 quantifies the strength of the mismatch. Note

that (13) implies that 𝑘 (𝑛) ≤ 𝑛1−𝜃 since
𝑘 (𝑛)
𝑛
𝑛𝜃 ≤ 1. For matched

detectors (𝜃 = 0), this condition means that secure payload is at

most linear. To obtain the scaling result for mismatched detectors

below, we will assume a slightly stronger condition
𝑘 (𝑛)
𝑛
𝑛𝜃 → 0 as

𝑛 → ∞.

At first glance the above definition of the mismatch may seem a

bit contrived. In reality, the upper bound of the support of 𝐹W
(
(𝑠W[𝑖 ] (𝐶))

2

)
could be any function of 𝑛 lower bounded by 𝑘 (𝑛)/𝑛, so why scale

𝑘 (𝑛)/𝑛 by the factor𝑛𝜃 ? There are two important advantages of cap-

turing the mismatch in this fashion. First, the parametric model (13)

can be verified with inexpensive experiments. Second, we can eas-

ily obtain the payload scaling result for mismatched detectors as

follows.

Let 𝑍 ∼ 𝐹W be the random variable modeling the distribution

of (𝑠W𝑖 (𝐶))2. Denoting for compactness 𝑎𝑘,𝑛 = (𝐹W)−1
(
𝑘 (𝑛)𝑛𝜃−1

)
,

from (13) we see that the (𝑠W[𝑖 ] (𝐶))
2
are equal in distribution to

𝑍 [0, 𝑎𝑘,𝑛], i.e.,𝑍 restricted to [0, 𝑎𝑘,𝑛]. Since all𝑘 (𝑛) images selected

by Alice are fully embedded, the expected deflection (7) of Warden’s

detector is
1

E[Δ2] = 𝑘 (𝑛)E[𝑍 [0, 𝑎𝑘,𝑛]] . (14)

The term E[𝑍 [0, 𝑎𝑘,𝑛]] can be computed using the definition of

conditional expectation

E[𝑍 [0, 𝑎𝑘,𝑛]] =
1

𝐹W (𝑎𝑘,𝑛)

∫ 𝑎𝑘,𝑛

0

𝑥d𝐹W (𝑥).

This allows us to compute the secure payload 𝑘 (𝑛) × log
2
3 from

the condition

𝛿 = 𝑘 (𝑛)E[𝑍 [0, 𝑎𝑘,𝑛]]

= 𝑛1−𝜃
∫ 𝑘 (𝑛)𝑛𝜃−1

0

(𝐹W)−1 (𝑥)d𝑥 . (15)

1
Recall WLOG that 𝜎2 = 1 and the partially embedded image is ignored.
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Observe that, as 𝑛 → ∞, the region of integration is a vanishing

right-neighborhood of 0. Hence, the asymptotics of the secure pay-

load 𝑘 (𝑛) × log
2
3 are determined by the (left-tail) asymptotics of

𝐹W (𝑥) as 𝑥 → 0
+
.

As a corollary, we consider the case when 𝐹W (𝑥) ∝ 𝑥𝛽 , 𝛽 > 0,

on a small right-neighborhood of 0. It follows that (𝐹W)−1 (𝑥) ∝
𝑥1/𝛽 , and we have 𝛿 = 𝑛1−𝜃 𝛽

𝛽+1
(
𝑘𝑛𝜃−1

) 𝛽+1
𝛽

for sufficiently large 𝑛.

Solving for 𝑘 (𝑛) yields the following secure payload scaling with

detector mismatch

𝑘 (𝑛) ∝ 𝑛
1−𝜃
1+𝛽 . (16)

Such a case is reasonable to consider because many positive random

variables have distribution functions with left-tail power scaling,

e.g., Gamma and Beta prime.

We wish to point out that 𝜃 is not symmetrical w.r.t. the pair of

detectors 𝑑A, 𝑑W in the sense that 𝜃 will generally change if Alice

and the Warden swap their detectors. This is because the way 𝜃 is

defined, it inherently measures the drop in the scaling exponent

of Alice’s secure payload w.r.t. the Warden’s matched case when

she spreads with 𝑑W (case 𝑑W,𝑑W vs. 𝑑A,𝑑W). It is thus Warden-

centric. In particular, 𝜃 does not tell us how much Alice loses if she

estimates the secure payload w.r.t. her detector (Alice’s matched

case) when the Warden has a different detector (case 𝑑A,𝑑A vs.

𝑑A,𝑑W ). Assessing this within our model is far from straightforward

because the deflection changes both due to different ordering of

images in the bag and the fact that the shifts are computed w.r.t. a

different detector.

7 Setup of experiments
In this section, we first explain the setup of our experiments, the

datasets, detector training, the way we estimate 𝜃 , and various other

implementation details. The setup stems from our assumptions: a)

the cover source and the embedding scheme are available to both

the sender and the Warden, b) Alice’s payload spreading strategy

and the payload size embedded in a bag are known to the Warden.

7.1 Datasets and detectors
All experiments are executed on the image dataset ALASKA II [5]

developed to the spatial domain as 8-bit grayscale images using

the BOSSbase script [1]. We consider this dataset as more realistic

than developing the RAW files as in [5] because the randomized

development pipeline can produce excessively noisy images with

completely flat response curves.

The dataset contains 75,000 images, whichwe randomly split into

three disjoint parts of the same size for our experiments (Splits 1–3).

Split 1 and Split 2 are used for training detectors while Split 3 was

used for assessing the secure payload scaling. In all experiments, the

sender uses the embedding algorithm HILL [16], which is simulated

to perform on the rate–distortion bound.

Alice and Bob use one of four possible detectors: SRNet [2], the

Efficient Net B4 [17, 19], SE-ResNet18 (Xu2) [12], and the LCLC

classifier [6] trained on the SRM [10]. The CNNswere pre-trained on

ImageNet with the binary task of steganalyzing J-UNIWARD [11]

(the so-called JIN pre-training exactly as described in [3]). The

refinement of all three CNNs and training of the LCLC to detect

HILL was done with stego images embedded with random payloads

in the following manner. Given a cover image with relative capacity

0 ≤ 𝐶 ≤ log
2
3 bpp, the relative payload was drawn uniformly

randomly from the set 𝐶P := {𝐶𝑥 : 𝑥 ∈ P}, a grid of payloads

scaled by 𝐶 where

P = {0.03, 0.05, 0.07, 0.1, 0.2, ..., 0.9, 1.0}. (17)

SRNet and SRM were trained on Split 1 while B4 and Xu2 were

trained on Split 2. Each split was randomly partitioned into disjoint

subsets of 22k, 1k, and 2k images for training, validation, and testing,

respectively. The CNNs logit is used as the detector’s response,

while for the SRM based classifier, we use the projection of the

feature vector on the weight vector.

The response curves were estimated using the same scaled grid

of payloads above,𝐶P (again,𝐶 depends on the image at hand). We

use a grid of payloads scaled by the relative capacity 𝐶 so that all

estimated response curves have the same resolution, i.e., number of

grid points. Using a fixed grid of payloads may cause some images

with lower relative capacities to have response curves undefined at

the largest grid points. We computed the average detector response

𝜚 (𝛼) and the standard deviation of detector outputs �̂� (𝛼) using
100 stego images (with different PRNG seeds in the embedding

simulator) for each payload 𝛼 ∈ 𝐶P bpp. To draw a sample from

N(𝜚 (𝛼), �̂�2 (𝛼)) for general𝛼 when simulating theDLS (Section 5.2),

we linearly interpolate 𝜚 (𝛼), �̂�2 (𝛼) from the two closest grid points

from 𝐶P. The secure payload of the DLS was estimated on images

from Split 3. To determine the scaling of the secure payload across

a range of bag sizes, the binary search (Section 5.1) is repeated for

𝑛 ∈ {24, 25, . . . , 212}. The number of bags used in the binary search

was 𝑁 = 500 for all bag sizes.

In our experiments we mainly use two poolers: The simple aver-

age, which is agnostic w.r.t. the sender’s payload allocation strategy

𝜋avg (Y) =
1

𝑛

𝑛∑︁
𝑖=1

𝑑W (𝑌𝑖 ), (18)

and a version of the correlator introduced in [20]

𝜋 corr (Y) =
𝑛∑︁
𝑖=1

𝑑W (𝑌𝑖 )𝑠 (𝛼𝑖 ) . (19)

Here, 𝑠 (𝛼) is a logistic fit to embedding shifts 𝑠W
𝑘
(𝛼) across the

testing set (2k images) of the split on which 𝑑W was trained (see

Section 6.3 in [20] for more details). We use this correlator instead

of 𝜋corr (6) because this theoretically optimal pooler is unrealizable

in practice as it needs the shifts 𝑠W𝑖 (𝛼𝑖 ) of Warden’s detector, which

would necessitate Warden’s access to cover images. We note that

𝜋 corr is still clairvoyant because it is given Alice’s payloads 𝛼𝑖 . Using

the correlator 𝜋 corr is thus conservative as the secure payload deter-

mined with this pooler will likely be smaller than when the Warden

needs to guess what kind of detector Alice uses for spreading and

use it to estimate 𝛼𝑖 from the images at hand.

7.2 Estimating detector mismatch parameter 𝜃
In this section, we describe how the detector mismatch parameter

𝜃 is estimated in our experiments. For brevity, from now on we use

𝑠W𝑖 , 𝑠
A

𝑖 instead of the more bulky 𝑠W𝑖 (𝐶𝑖 ), 𝑠A𝑖 (𝐶𝑖 ).
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Fixing a pair of Alice’s and Warden’s detectors 𝑑A,𝑑W, and a

sender (greedy), we estimate 𝜃 for bag size 𝑛 in the following man-

ner. Let X = (𝑋1, . . . , 𝑋𝑛) be a bag of randomly selected cover

images and 𝑘 (𝑛) be the secure payload determined for that bag

size. We first order the images by their shift at capacity w.r.t. Al-

ice’s detector from the smallest to the largest. The permutation is

denoted using the subscript [𝑖] so that 𝑠A[1] ≤ · · · ≤ 𝑠A[𝑛] where 𝑠
A

[𝑖 ]
is the shift in response of 𝑑A for image 𝑋 [𝑖 ] embedded at capac-

ity. Since Alice is using the greedy sender, she fully embeds the

first 𝑘 (𝑛) images 𝑋 [1] , . . . , 𝑋 [𝑘 (𝑛) ] . The shifts of Warden’s detector

𝑑W for 𝑋 [1] , . . . , 𝑋 [𝑘 (𝑛) ] are denoted by 𝑠W[1] , . . . , 𝑠
W

[𝑘 (𝑛) ] which are

unordered. Assuming the uniformity in Eq. (13) holds, computing

max𝑖=1,...,𝑘 (𝑛) 𝐹
W

(
(𝑠W[𝑖 ])

2

)
would give a biased estimate of the quan-

tity 𝑘 (𝑛)𝑛𝜃/𝑛. Since the CDF 𝐹W must be estimated empirically and

images are sampled without replacement, we opted to instead use

the 98th percentile of the list 𝐹W
(
(𝑠W[𝑖 ])

2

)
, 𝑖 = 1, . . . , 𝑘 (𝑛) for robust-

ness against right-tail outliers. We further sort the 𝐹W
(
(𝑠W[𝑖 ] )

2

)
in

increasing order and select the ℓ98th entry, where ℓ98 = ceil(0.98 ×
𝑘 (𝑛)). More precisely, the 98th percentile of 𝐹W

(
(𝑠W[𝑖 ])

2

)
for the

bag X can be expressed as

𝑝≠
98
(𝑛) = min

𝑖=1,...,𝑘 (𝑛)

{
𝐹W

(
(𝑠W[𝑖 ] )

2

)
: |J (𝑖) | ≥ 0.98 × 𝑘 (𝑛)

}
. (20)

where |J (𝑖) | counts the number of indices 𝑗 ∈ {1, . . . , 𝑘 (𝑛)} for
which 𝐹W

(
(𝑠W[ 𝑗 ])

2

)
≤ 𝐹W

(
(𝑠W[𝑖 ] )

2

)
.To reduce estimation variance,

we took the average of 𝑝≠
98
(𝑛) over 𝑁 = 2000 bags to be estimate

of 𝑘 (𝑛)𝑛𝜃/𝑛 (see Eq. (13)). The same algorithm was applied to the

matched case when Alice spreads withWarden’s detector and hence

the images are ordered by shifts w.r.t. the Warden’s detector, 𝑋 (𝑖 ) .
Since Alice and Warden share the same ordering, we simply have

𝑝=
98
(𝑛) = 𝐹W

(
(𝑠W(ℓ98 ) )

2

)
. (21)

Although our theory assumes the support of 𝐹W
(
(𝑠W[𝑖 ])

2

)
in-

creases by a factor of 𝑛𝜃 , we will estimate the power scaling as if 𝜃

depended on 𝑛, 𝜃 (𝑛), and then average our estimates across 𝑛. For

each 𝑛, we thus obtain one estimate of 𝜃 (𝑛) as

ˆ𝜃 (𝑛) = 1

log𝑛
log

𝑝≠
98
(𝑛)

𝑝=
98
(𝑛) . (22)

Experimentally, the estimator
ˆ𝜃 (𝑛) is approximately constant in

𝑛 which confirms the validity of our modeling assumption from (13).

The final estimate of 𝜃 is obtained by averaging 𝜃 (𝑛) over all bag
sizes 𝑛 ∈ {24, . . . , 212}

𝜃 =
1

9

12∑︁
𝑘=4

ˆ𝜃 (2𝑘 ). (23)

We heuristically average across 𝑛 since we are ultimately concerned

with obtaining a single value for 𝜃 over the entire range of bag sizes.

8 Results
In this section, we present and discuss all the results. We begin with

the case of matched detectors and then study the secure payload

scaling with mismatched detectors.

Figure 1 contains eight log-log subplots of the secure payload

size 𝑃𝛿 (𝑛) as a function of 𝑛 at detectability 𝛿 = 𝑃E = 0.2 for the SLS

(first row) and greedy (second row) senders. Each subplot contrasts

the scaling of the secure payload when Alice spreads with four

different detectors while the Warden detects with a fixed detector

(column). We use 𝜋avg for SLS as Warden’s pooler while 𝜋 corr was

used for greedy. The average pooler for SLS is close to the optimal

correlator because the soft output of all four detectors on covers is

approximately Gaussian and the SLS by definition induces a shift in

the soft output. The legend highlights Alice’s choice for the detector

and includes the slope of a line fit to the secure payload across all

bag sizes 𝑛 = 2
4
to 2

12
. The matched case detector is in boldface.

The bottom chart in each column contains a color-coded graphical

representation of the value of the detector mismatch parameter 𝜃

estimated as explained in Section 7.2.

8.1 Matched detectors
We first comment on the cases with matched detectors. In Figure 2

left, we show the secure payload for all four cases of matched

Alice’s and Warden’s detectors for the SLS sender extracted from

the subplots in Figure 1. The scaling exponent varies from 𝛾 = 0.79

for 𝑑A = 𝑑W = SRM to 𝛾 = 0.85 when both actors share Xu2. It

is further worth mentioning that the secure payload when both

actors use SRM is about 3 times larger than when they share an

SRNet.

The differences in the scaling exponent are related to the CDF

of the square shifts at capacity. By the scaling theorem for matched

detectors (Section 6.1), the exponent is determined by the distri-

bution of the squared shifts (𝑠W (𝐶))2 of Warden’s detector in the

right neighborhood of zero. In Figure 2 right, we show the log-log

plots of the empirical CDF of (𝑠W (𝐶))2 for all four detectors. For
each detector, we compute its empirical CDF’s slope 𝛽 (shown in

the legend) by fitting
2
a line to all points left of (𝑠W (𝐶))2 = 2

−3
. We

computed estimates of the secure payload scaling exponent using

the plug-in estimator 𝛾 (𝛽) = 1/(𝛽 + 1). These estimates from the

CDF are contrasted with the observed scaling exponents 𝛾 (line fits)

in Figure 2 (left). While the values of 𝛾 (𝛽) are slightly underesti-

mated, they do correctly predict that the SRMwill have the smallest

exponent and Xu2 the largest. The ordering 𝛾 (𝛽) predicts between
SRNet vs. SRNet (red) and B4 vs. B4 (purple) is swapped compared

to 𝛾 , however this mis-estimation is likely due to the bending of

B4’s CDF.

To make this paper self contained, we provide a condensed in-

tuitive explanation for why a super SRL secure payload scaling is

observed. It is intuitively due to the fact that the cover source con-

tains a non-negligible fraction of images with diminishing response

to embedding as captured by the CDF (Figure 2). We make a parallel

with the closest related result in prior art, which is Ker’s square

root law of secure payload for content-adaptive steganography [14].

Instead of spreading payload across images, the author analyzes

secure payload for adaptive steganography while capturing the

detectability of embedding with pixel costs (Fisher information).

Most importantly, the author bans the existence of a non-negligible

2
To the right of 2

−3
, the CDFs are non-linear and for sufficiently large bags greedy

in the matched detector case will almost exclusively embed in images for which

(𝑠W (𝐶 ) )2 ≤ 2
−3
.
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Figure 1: Log-log plot of secure payload vs. bag size 𝑛 for SLS (first row) and greedy (second row) senders and different
combinations of Alice’s and Warden’s detectors. SLS is steganalyzed with the 𝜋avg pooler while the greedy with 𝜋 corr. For every
bag size 𝑛, the Warden’s pooler achieves constant detectability 𝑃E = 0.2. The choice of Alice’s detector appears in the legend with
the slope of line fit to the secure payload (matched case in boldface font). The bottom charts (third row) contain color-coded
graphical representations of the estimated detector mismatch parameter 𝜃 .

source of free bits in the form of pixels’ diminishing costs. While

this ban is reasonable on the level of pixels or DCT coefficients, soft

outputs of a detector exhibit a larger diversity. While it is unclear

how to estimate the detectability on the pixel level, it is more feasi-

ble to estimate it for entire images based on their response curves

or the shifts 𝑠W (𝐶) for the greedy sender. The reader is referred

to Section Discussion in [8] for a more detailed discussion on this

topic, including the limitations of the modeling approach and what

one could expect asymptotically for much larger bag sizes.

8.2 Mismatched detectors
Inspecting Figure 1, when Alice spreads with her own detector

rather than Warden’s (matched case, boldface), there is a loss in

secure payload 𝑐𝑛𝛾 both in terms of the multiplicative constant

𝑐 and the scaling exponent 𝛾 . This loss generally depends on the

type of the mismatch and the sender. It is notably smaller when the

Warden has the inferior detector (SRM).

We wish to point out that while for the matched case the secure

payload appears to follow a power law, for mismatched detectors

the curves exhibit some “bending” in the log-log plot, indicating a

more complex dependence. Except when Alice uses SRM, the secure

payload size initially exhibits super SRL power scaling close to the

matched case and only starts bending for the largest tested bags.

This has practical consequences for Alice when she sets up her

communication channel. We elaborate on this aspect in more detail

in Section 9. For now, we interpret the experimental results shown

in Figure 1 separately for the three cases when the inferior detector

is given to the Warden, then to Alice, and when both actors use a

CNN.

CNN vs. SRM: As our first type of detector mismatch, we review

the case when the inferior detector (SRM) is given to the Warden

(first column of subplots in Figure 1) while Alice spreads with a

CNN, the superior detector. The secure payload for the SLS sender

stays the same regardless of which CNN Alice uses for spreading.

For the greedy sender, however, when Alice spreads with a different

detector, the secure payload is smaller and so is the scaling exponent

(the difference is however very small) despite the fact that she

uses a better detector. This is in agreement with our analysis from

Section 6.2: as long as the Warden uses a different detector (not

necessarily better), the scaling exponent will be smaller by 𝜃/(𝛽 +
1) ≥ 0. In other words, the Warden does not need to have the better

detector, she only needs a different detector to observe a decrease

in the scaling exponent.
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Figure 2: Left: Scaling of secure payload for the SLS sender for matched detectors. While the secure payload for the SRM
classifier scales with a smaller exponent than for the CNNs, the secure payload is still larger for SRM as it is an inferior detector
w.r.t. network detectors. Right: Log-log plot of the empirical CDF 𝐹W of (𝑠W (𝐶))2 and the line fit with an estimated slope 𝛽 for
all four Warden’s detectors.

SRM vs. CNN: We now inspect the case when Alice spreads with

the inferior detector (SRM). To this end, we extract the correspond-

ing curves for each sender from Figure 1 and show them in two

separate plots in Figure 3. When Alice spreads with the inferior

detector (SRM) the scaling exponent as well as the multiplicative

constant clearly decrease w.r.t. Alice’s matched case, SRM vs. SRM.

For the SLS, we still observe super SRL scaling when the Warden

uses B4 or Xu2 (𝛾 = 0.65 and 0.66, respectively) but when she uses

SRNet, the scaling follows the SRL with 𝛾 = 0.50. The greedy sender

suffers a significantly larger loss as we observe sub-SRL scaling

with exponents ranging from 𝛾 = 0.13 when the Warden is given

Xu2 to 𝛾 = 0.40 when she uses SRNet. This can be intuitively ex-

plained by the aggressiveness of the greedy sender – Alice trusts

a poor detector and in the end pays dearly for her choice as she

would be better off spreading uniformly, in which case her secure

payload would follow the SRL scaling.

CNN vs. CNN: Finally, we take a closer look at the impact of

detector mismatch when both Alice and the Warden use a CNN

detector (red, purple and green curves) for the SLS. Following the

last three columns of subplots in Figure 1, we first comment on the

SLS sender. Here, the mismatch also decreases the secure payload

and the scaling exponent but the decrease is very small when the

Warden uses B4 and Xu2 (𝛾 ≥ 0.80). When the Warden uses SRNet,

the scaling exponent decreases from 𝛾 = 0.79 for the matched

case to approximately 0.65 when Alice spreads with B4 and Xu2. If

we were to advise Alice on her choice of a detector, from among

the three tested CNNs, she should use an SRNet. In summary, the

secure payload for a CNN vs. CNN mismatch still follows a super

SRL scaling up to the largest bag size of 4096. Similar conclusions

can be reached for the greedy sender.

Finally, we comment on the predictive power of the detector mis-

match parameter 𝜃 shown in the bottom row of figures in Figure 1.

The color coding helps convey the fact that in all cases 𝜃 correctly

predicts which mismatch type exhibits the largest and the smallest

deviation from the matched scaling.

9 Discussion
We now summarize the lessons learned from our experiments and

from the theoretical study. For clarity, we begin with lessons for

Alice and then for the Warden.

To Alice: Alice needs to keep in mind that a mismatch between her

and Warden’s detector generally decreases her secure payload 𝑐𝑛𝛾

both in terms of the constant of proportionality 𝑐 and the scaling

exponent𝛾 . And this is true evenwhen she has the superior detector.

The SLS sender implemented with feedback from a trained CNN

detector seems particularly robust to detector mismatch and offers

super SRL payload scaling for bag sizes up to 1000.

Alice needs to avoid using payload spreaders that are overly

aggressive (e. g., greedy) especially when implemented with a poor

detector (SRM). We observed that the greedy sender can exhibit

significantly sub SRL payload scaling under these circumstances.

Here, we reiterate that the greedy sender was included in our study

because it lends itself to a tractable analysis and provides insight

that would be difficult to obtain for the SLS sender.

Our analysis gives some feedback to Alice on how to setup her

covert communication channel and how to use it in practice. Our

analysis starts with Alice deciding on an acceptable detectability

𝛿 assuming the Warden is allowed to analyze all images she will

ever send. While we use 𝑃E as a measure of detectability in our
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four different detectors.

experiments, she can certainly use othermeasures, such as weighted

AUC [4] or 𝑃D at a fixed 𝑃FA. Then, for a given steganographic

method she trains her SID 𝑑A and determines the secure payload

𝑃𝛿 (𝑛) as a function of 𝑛 with respect to 𝑑A. Considering that for

mismatched detectors the secure payload slightly deviates from a

power law for the largest bags and taking into account that the

under mismatched detectors her secure payload will be smaller, she

selects the maximal number of images, 𝑛0, she will ever send using

her steganographic channel (e. g., a social network account). Then,

she selects𝑛0 images at random fromher cover source and computes

the payload chunks 𝛼𝑖 , 𝑖 = 1, . . . , 𝑛0, that would be assigned to her

cover images if she was to embed the entire secure payload 𝑃𝛿 (𝑛)
among all 𝑛0 covers. In practice, to embed a specific message of

𝑚 bits she selects the images one by one (e.g., of fixed size 𝑛pixels)

until the total accumulated payload becomes larger or equal to the

size of the desired message—she finds the smallest 𝑁 such that∑𝑁
𝑖=1 𝛼𝑖𝑛pixels ≥ 𝑚 and sends her message in a bag of 𝑁 images.

For the next message, she continues with images 𝑁 + 1, . . . , 𝑛0.

When she uses up all her covers, she will have exhausted her stego

channel at detectability 𝛿 and needs to stop using the account

for steganography. We wish to stress that Alice cannot guarantee

detectability w.r.t. an unknown detector. When Warden’s detector

𝑑Wis unknown, Alice can only estimate 𝑃𝛿 (𝑛) w.r.t. 𝑑W using her

own simulated setup and / or be conservative with her payload

size. Our analysis provides some guidance in terms of the effect of

detector mismatch on the secure payload.

To theWarden: TheWarden needs to keep her detector as secret as
possible and needs tomake an effort to have a different detector than
Alice. Should Alice get a hold of Warden’s detector, she can enjoy

super SRL secure payload scaling with a very large exponent𝛾 ≥ 0.8

(Section 8.1). Any information about the detector leaked to Alice

empowers her in terms of secure payload. Say, Alice knows that the

Warden uses a CNN for detection. As discussed in Section 8.2, even

when she trains a different CNN architecture for payload spreading

than what the Warden used, while the scaling exponent decreases,

it can still be significantly larger than 0.5 (super SRL).

Under the most realistic conditions, the Warden will not know

how Alice allocates her payloads and Alice will be ignorant about

Warden’s pooled detector. The proper framework to study this ad-

versarial setup is via Game Theory. In [9], the authors studied a

zero-sum game with payoff function in the form of the deflection

of a shared (matched) detector with payload allocation as Alice’s

strategy and the coefficients in a linear pooler as Warden’s strat-

egy. They showed that this Payload Allocation Game has a unique

weak Nash equilibrium in pure strategies with the minimum deflec-

tion sender (MDS) as the equilibrium strategy.
3
A possible future

direction is to expand on this result for the case of mismatched

detectors.

10 Conclusions
With repetitive use of the stego channel, the Warden is allowed to

take into consideration the entire collection of images ever commu-

nicated by Alice to conclude whether she is using steganography.

We say that the Warden is executing pooled steganalysis. If Alice

wishes to control her risk of being detected, she needs to know

how to adjust the payload with increased number of communicated

images 𝑛. In this paper, we phrase the problem of finding the secure

payload that guarantees a prescribed statistical detectability by

Warden’s detector within the framework of batch steganography

and pooled steganalysis. In particular, Alice spreads her message

across images based on feedback from a detector trained to detect

her steganographic scheme—she performs detector-informed batch

3
The MDS is also Alice’s optimal strategy when the Warden is omniscient [7, 20].
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steganography. The main goal of our paper is to determine the scal-

ing of the secure payload with 𝑛 when the detector used by Alice

for spreading and the detector used by the Warden for detection are

different. Many interesting questions come to mind, such as what

happens to the secure payload scaling when Alice has a detector

that is superior to Warden’s and when it is the other way around.

We carry out experiments with four different types of detectors—

three deep convolutional neural networks and one classifier with

SRM features. We also model and quantify the mismatch mathe-

matically within a statistical model of the soft output of Warden’s

detector. In summary, we observed that detector mismatch gener-

ally decreases the super square root scaling exponent observed when

Alice spreads with Warden’s detector (the “matched case”). This de-

crease generally depends on the spreading strategy and the type of

mismatch. Surprisingly, this decrease is present even when Eve has

the superior detector, as long as it is different from Alice’s. Finally,

the mismatch as quantified within the adopted statistical model

seems to qualitatively match the trends observed in experiments.

We have the following messages for Alice and the Warden:

Alice should be conservative with her spreading strategy
(avoid overly aggressive spreaders) and keep in mind
that the payload scaling exponent will be smaller even
when the Warden has the inferior detector.
Asymptotically, it is important for the Warden to have
a different detector than Alice. The Warden also needs
to make every effort to not reveal how her detector is
built else she risks super square root law payloads being
passed without detection.

In the future, we plan to extend our study to the JPEG domain. We

also plan to inspect a wider range of datasets to see if the super

square root secure payload scaling is a universal phenomenon that

occurs in typical image sources.
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