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ABSTRACT

Understanding the mechanisms that lead to false alarms (erro-

neously detecting cover images as containing secrets) in steganaly-

sis is a topic of utmost importance for practical applications. In this

paper, we present evidence that a relatively small number of pixel

outliers introduced by the image acquisition process can skew the

soft output of a data driven detector to produce a strong false alarm.

To verify this hypothesis, for a cover image we estimate a statistical

model of the acquisition noise in the developed domain and identify

pixels that contribute the most to the associated likelihood ratio

test (LRT) for steganography. We call such cover elements LIEs

(Locally In�uential Elements). The e�ect of LIEs on the output of

a data-driven detector is demonstrated by turning a strong false

alarm into a correctly classi�ed cover by introducing a relatively

small number of “de-embedding” changes at LIEs. Similarly, we

show that it is possible to introduce a small number of LIEs into a

strong cover to make a data driven detector classify it as stego. Our

�ndings are supported by experiments on two datasets with three

steganographic algorithms and four types of data driven detectors.
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1 INTRODUCTION

In steganalysis, it is important to control the false alarm rate for a

number of reasons. First, high false alarm rates make it increasingly

more di�cult for the steganalyst to identify the steganographer in,

e. g., a social network due to the large number of users and images

that need to be analyzed and the immense diversity of the cover

source. Second, images identi�ed as containing steganographic
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content are likely to be further inspected to determine the stegano-

graphic method or software used for hiding the secret and possibly

search for the stego key in the ultimate quest to recover the se-

cret message itself. Since such forensic analysis is expensive, high

false alarm rates strain computational resources and make practical

steganalysis less operative.

Modern steganography detectors are data-driven and can be

trained to address a wide spectrum of steganalysis tasks, includ-

ing the detection of a speci�c steganographic technique (binary

classi�cation), classi�cation of images into multiple classes based

on the embedding method (universal blind detectors) [14, 15, 17],

estimation of the size of the secret payload (quantitative detec-

tors) [11, 16], and feature extraction for clustering to identify the

steganographer from among many actors [12]. These detectors

can be roughly divided into two groups – systems trained on low-

dimensional representations of images (features) called rich media

models [4, 8, 13] and end-to-end trained systems implemented with

deep convolutional neural networks (CNNs) [2, 18, 21–23, 25].

In this paper, we take a closer look at what makes modern data-

driven steganalyzers classify a cover image as a strong stego. We

present evidence that the randomness of the acquisition process

itself (the sensor noise) at pixels with low cost has a major e�ect

on the misclassi�cation. We work with datasets for which one can

accurately estimate the statistical model of the acquisition noise in

the developed domain. The model is used to identify locally in�u-

ential cover elements (LIEs) by their outlier values of the associated

likelihood ratio test for steganography. De-embedding a relatively

small number of such LIEs makes data driven detectors correctly

classify the image as cover. Vice versa, making a small number of

embedding changes at LIEs can turn a strong cover into a false

alarm. We emphasize that LIEs are identi�ed purely from the acqui-

sition model and the embedding costs with no feedback from the

trained detector. This provides indirect evidence that data driven

detectors must be inherently aware of the acquisition model and

that they approximate in some sense the most powerful detector.

The paper is structured as follows. In the next section, we brie�y

review relevant prior art. In Section 3, we describe two datasets

used for all experiments. They were selected judiciously in order to

have a tight �tting model of the acquisition noise in the developed

domain. This model and a method for estimating its parameters are

described in Section 4. Section 5 contains the details of two kinds

of experiments, the deletion and insertion tests, that are used in

this paper to demonstrate the e�ect of LIEs on soft output of a data

driven steganalyzer. The results of all experiments, including their

discussion appear in Section 6. The paper is concluded in Section 7,

where we also outline possible future extensions of this work.
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2 RELEVANT PRIOR ART

The authors of [24] showed that CNNs trained for certain stega-

nography methods in the JPEG domain can identify a JPEG image

embedded with a secret from a small number of embedding changes,

sometimes even a single change—the stego images contain Locally

Detectable Embedding Artifacts or LDEAs. For the same source

of cover images and network architecture, some steganographic

methods do not introduce LDEAs (J-UNIWARD [10]) while others

do (J-MiPOD [5]). LDEAs exist for CNNs because they are better

equipped to “see” local embedding artifacts [24] than steganalyzers

based on rich models. This is because CNNs detect steganographic

changes via arrays of repeated convolutions transformed by non-

linear activations and thus have the ability to reserve some feature

maps to communicate outlier values (local artifacts). In contrast,

for classi�ers that work with rich models formed by global higher-

order statistics of image noise residuals, the e�ects of a few localized

embedding artifacts will get “drowned” in such global descriptors.

The current paper can be thought of as a complement of the

work on LDEAs. We study what triggers a detector to respond with

“stego” on cover images in which case the detector outputs a false

alarm. Are these false alarms perhaps due to a small number of

pixels in the cover image similar to LDEAs? Just like for LDEAs,

the e�ect of LIEs on a detector output will generally depend on

the cover source, the detector, and the embedding algorithm. LIEs,

however, are fundamentally very di�erent from LDEAs. LDEAs are

introduced by the embedding algorithm while LIEs naturally occur

in cover images. While LIEs could be introduced by the content

(the scene itself), we will mostly be interested in LIEs due to the

acquisition process, the process of taking a picture. We limit our-

selves to the spatial domain in this paper because acquisition noise

has a stronger e�ect in this domain than in the JPEG domain due

to quantization. Having said this, LIEs might be present for high

JPEG qualities. We leave this part of the study for future research.

3 DATASETS WITH A KNOWN ACQUISITION
MODEL

In order to study how pixel outliers due to acquisition contribute

to false alarms, we need a dataset with a known acquisition noise

model in the developed domain. Undoubtedly, the most realistic

dataset would be formed by actually taking multiple images of

the same scene from a tripod-mounted camera with �xed settings.

However, even with a sturdy tripod one cannot completely avoid

small spatial misalignments due to vibrations and variations in e. g.

the exposure time [7]. To eliminate the e�ect of these inevitable

imperfections, we decided to form the dataset from single exposures

and instead simulate multiple exposures of the same scene taken at

a higher ISO by adding di�erent realizations of the heteroscedastic

sensor noise in the RAW domain. Our “multiple acquisitions” of

the same scene thus appear to be taken at a higher ISO. As shown

by Bas in his Natural Steganography [1, 20], with accurate estima-

tion of the parameters of the heteroscedastic noise, these images

simulated to be taken at a higher ISO are practically statistically

indistinguishable from images actually acquired at the higher ISO

setting.

In particular, we took #ĩęěĤě = 503 RAW (NEF) ISO 64 images

(scenes) with a full frame 45MP Nikon Z7. All images were taken

outdoors and consist mostly of landscape scenes. By taking ad-

ditional test pictures of a uniform background, we estimated the

heteroscedastic noise model in the RAW domain for ISO 64 and

200. The heteroscedastic model assumes that pixels in the RAW

domain are realizations of independent Gaussian random variables

N(`RAW
ġ

, ERAW
ġ

), where `RAW
ġ

is the noise-free pixel at location :

and the variance

ERAW
ġ

= 0ISO`
RAW
ġ

+ 1ISO, (1)

where the two parameters 0ISO, 1ISO depend on the ISO setting.

Pronouncing the ISO 64 image as the noise-free image `RAW
ġ

, simu-

lating acquisitions at ISO > 64 amounts to replacing `RAW
ġ

with a

sample from

N
(
`RAW
ġ

, (0ISO − 064)`
RAW
ġ

+ 1ISO − 164

)
. (2)

Both datasets described below were created for ISO 200 with

0200 = 0.8298 and1200 = −821.862 (064 = 0.299 and164 = −311.112).

The fact that we simulate multiple RAW exposures allows us to

generate as many of them as needed for an accurate estimation of

the model in the developed domain. The RAW images were subse-

quently developed using two di�erent development pipelines (ex-

plained below) and cut into #ĪğĢě = 10 × 16 = 160 non-overlapping

256×256 tiles of �oats (to better estimate the model in the developed

domain) and �nally quantized to 8-bit grayscale to obtain the actual

cover images. Since there are #ĪğĢě tiles per each 45MP scene, we

would have in total #ĩęěĤě ×#ĪğĢě = 80, 480 cover images. However,

we reject cover images with poor content (e. g., tiles with just sky)

based on the following content-complexity measure. Each image is

transformed as in JPEG compression using block-DCT on disjoint

8× 8 blocks. The content complexity measure is the sum of squares

of all DCT coe�cients from the upper left quadrant of each block

(DCT modes (D, E), 0 f D, E f 3, (D, E) ≠ (0, 0)). Then all images

are ranked w.r.t. their complexity score and we discarded 23, 000

images1 with the lowest score. Thus, the actual number of grayscale

256×256 cover images in our datasets was #ĩěĪ = 57, 480.

The two development pipelines are:

(1) SENSED. The development of this dataset does not include

demosaicking. Each 2 × 2 Bayer �lter square with one red,

one blue, and two green RAW values has been converted to

a single colored RAW pixel to simulate actually sensing all

three colors at every pixel.2 This subsampling step changes

the 45MP RAW �le to a new 11.25MP RAW �le in which

all three colors are registered at each pixel. This RAW �le

is further processed with Python’s rawpy library (raw col-

orspace, 1008 black level, all automatic adjustments turned

o�) to obtain a 16-bit color image, which is then converted

to grayscale �oats in the interval [0, 255] (for developed-

domain acquisition model estimation) and quantized to 8

bits. The resulting image is cut into #ĪğĢě non-overlapping

256×256 8-bit grayscale images forming the dataset SENSED.

(2) VNG. This dataset is more realistic. The 45MP RAW �le was

processed using VNG color interpolation (raw colorspace,

1008 black level, with all automatic adjustments disabled) to

1This value was selected based on visual inspection and was �xed for both datasets
described below in order to have the same number of images in both datasets.
2The green pixel was selected from the same position in the 2 × 2 Bayer tile across all
2 × 2 tiles (lower left pixel).
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produce a 16-bit color image. This image was then converted

to grayscale �oats within the range [0, 255] for estimating the

developed-domain acquisition model, before being quantized

to 8-bit grayscale. The resulting image is downsampled by a

factor of 2 using bicubic interpolation and divided into the

same number of non-overlapping 256×256 tiles.

We note that the rejection of images based on content complex-

ity described above has been executed for the VNG dataset and

was then adopted for the SENSED dataset as well. The �rst dataset

SENSEDwas included for its simplicity. Since there is no demosaick-

ing, this development pipeline does not introduce dependencies

among pixels in the developed domain. Due to the Gaussianity of

the heteroscedastic model, the developed domain model is a multi-

variate Gaussian (MVG) with a diagonal covariance. As explained

and detailed in the next section, we will use this model in the devel-

oped domain for the more realistic VNG dataset as well. Since the

VNG color interpolation algorithm and the subsequent downscal-

ing introduce dependencies among neighboring pixels, the MVG

model with a diagonal covariance is only an approximation for this

dataset.

4 DEVELOPED DOMAIN MODEL

We adopt a particularly simple Multivariate Gaussian (MVG) model

with a diagonal covariance for the pixels in the developed domain.

While this model is only an approximation for VNG due to the

dependencies introduced by color interpolation and downscaling,

this model ideally lends itself for identifying individual outlier cover

elements (LIEs). If we were to work with an entire Markov random

�eld, the concept of a LIE and its identi�cation would have to be

properly generalized to small pixel neighborhoods. We leave this

option for future research.

Having generated � + 1 simulated exposures in the developed

domain, the mean and variance are computed from the unquantized

cover pixels (their �oat versions) to decrease the estimation error.

Formally, we start with � + 1 images (acquisitions of the 8th scene)

x(ğ, Ġ) ∈ R256×256, where 8 ∈ {1, . . . , #ĩęěĤě } is the cover scene index

and 9 ∈ {1, . . . , � + 1} is the index of the simulated burst. Selecting

the �rst image in the “burst” as the cover x(ğ) = x(ğ,1) , we use the

remaining � images x(ğ,2) , . . . , x(ğ,þ+1) to estimate the mean and

variance of the (:, ;)th pixel, 1 f :, ; f 256:

`
(ğ)

ġĢ
=

1

�

þ+1∑
Ġ=2

x
(ğ, Ġ)

ġĢ
(3)

E
(ğ)

ġĢ
=

1

� − 1

þ+1∑
Ġ=2

(
x
(ğ, Ġ)

ġĢ
− `

(ğ)

ġĢ

)2
. (4)

Since the pixel values are 8-bit integers from I8 = {0, 1, . . . , 255},

the model of the :, ;th cover pixel in the 8-bit grayscale developed

domain is the GaussianN(`
(ğ)

ġĢ
, E

(ğ)

ġĢ
) �oored to integers and clipped

to a �nite dynamic range at 0 and 255

G
(ğ)

ġĢ
∼ ?

(ğ)

ġĢ
≜

⌊
N(`

(ğ)

ġĢ
, E

(ğ)

ġĢ
)
⌋
, (5)

where +G, is the operation of �ooring G ∈ R and

?
(ğ)

ġĢ
(<) =



1 −&

(ğ)

ġĢ
(< + 1) < = 0

&
(ğ)

ġĢ
(<) −&

(ğ)

ġĢ
(< + 1) 1 f < f 254

&
(ğ)

ġĢ
(<) < = 255

(6)

with &
(ğ)

ġĢ
(G) de�ned as the tail probability of N(`

(ğ)

ġĢ
, E

(ğ)

ġĢ
) :

&
(ğ)

ġĢ
(G) ≜ P{N (`

(ğ)

ġĢ
, E

(ğ)

ġĢ
) > G}. (7)

5 LIES

In this paper, we will assume that the Warden has an empirical

detector, for example a deep CNN, trained to detect embedding

with a known steganographic algorithm. With deep CNNs, we

take the stego class soft output as the detector’s output. Formally,

CNNs output two unnormalized class scores called the cover and

stego logits, I0 and I1, respectively. We take the stego logit class

as the detector’s output I, I : I256×256
8 → R. After applying the

softmax function, the mapping becomes 3 : I256×256
8 → [0, 1],

3 = 4−İ1/(4−İ0 + 4−İ1 ), representing a normalized soft output for

stego class (normalized soft output for cover class is omitted). The

Warden makes binary decisions on images by thresholding 3 with

threshold C ,

3 (y) > C =⇒ y is a stego image. (8)

The threshold is typically set in practice to achieve a desired

false alarm

P{3 (x) > C |x cover} = %FA (9)

or set to C = 0.5 for the Bayesian detector that minimizes the total

error probability under equal priors

%E =
1

2
(%D + %FA),

where %D is the detector power (true positive rate).

As explained in the introduction, we hypothesize that strong

false alarms are caused by a relatively small number of outlier

pixels or LIEs that skew the output of Warden’s detector. If the

detector misinterprets LIEs as embedding, then we need to take

embedding into account when looking for LIEs. In particular, it is

not enough for a pixel to be an outlier w.r.t. the acquisition noise

in the developed domain but it also needs to be in an area where

pixels are likely to be modi�ed by embedding. Our algorithm for

�nding LIEs only uses the acquisition model and the embedding

change rates. In particular, we make no use of the trained detector.3

We start with Warden’s hypothesis test formulated within the

adopted acquisitionmodel, derive the most powerful steganography

detector within the model (the likelihood ratio test), and identify

LIEs based on the largest values of the LRT. Formally, let d
(ğ)

ġĢ
g 0

denote the symmetric embedding costs computed from the 8th cover

image. The costs are computed by the steganographic method used

for embedding. The embedding modi�cations BġĢ ∈ {−1, 0, 1}, form

an array of independent samples from a ternary random variable

attaining values in {−1, 0, +1} with probabilities V
(ğ)

ġĢ
, 1− 2V

(ğ)

ġĢ
, V

(ğ)

ġĢ
,

3This is in contrast with [11] where the authors used attribution maps of Ě (vanilla or
integrated gradients) to �nd in�uential pixels in covers. While in�uential pixels found
this way a�ect the output more, they may contain an adversarial component as they
are found with feedback from the detector.
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Figure 1: Distribution of stego logits I (x) for cover images x.

Stego logit I (x) is used instead of soft output 3 (x) for demon-

stration purposes, as softmax compresses the di�erences and

reduces visualization clarity. Red represents the logit values

of images from C+, while green corresponds to the logits

of images from C−. S-UNIWARD, SENSED dataset, SRNet

trained for a �xed payload of 0.4 bpp.

respectively, which are determined by the payload and the embed-

ding costs of the 8th cover. The stego pixel probability mass function

(p.m.f.) @
(ğ)

ġĢ
is a mixture of quantized Gaussians for all pixels :; :

@
(ğ)

ġĢ
(<) = (1 − 2V

(ğ)

ġĢ
)?

(ğ)

ġĢ
(<)+

+ V
(ğ)

ġĢ
?
(ğ)

ġĢ
(< − 1)

+ V
(ğ)

ġĢ
?
(ğ)

ġĢ
(< + 1), (10)

with proper truncation at the boundaries of the dynamic range

< ∈ {0, 255}.

Given one speci�c image y(ğ) ∈ I256×256
8 , the steganalyst needs

to decide whether its pixels follow the cover or stego distributions

through the following statistical hypothesis test for all :; :

H0 :~
(ğ)

ġĢ
∼ ?

(ğ)

ġĢ

H1 :~
(ğ)

ġĢ
∼ @

(ğ)

ġĢ
. (11)

For this test, we will assume that the model parameters, the

means `
(ğ)

ġĢ
and the variances E

(ğ)

ġĢ
, as well as the change rates V

(ğ)

ġĢ
are

known. Hence the test is simple, and, by the statistical independence

of pixels in both cover and stego images, the most powerful detector

is the log-likelihood ratio

Λ
(ğ) (y(ğ) ) =

∑
ġĢ

Λ
(ğ)

ġĢ
(~

(ğ)

ġĢ
) =

∑
ġĢ

log
©«
@
(ğ)

ġĢ
(~

(ğ)

ġĢ
)

?
(ğ)

ġĢ
(~

(ğ)

ġĢ
)

ª®¬
, (12)

where Λ
(ğ)

ġĢ
(<) = log(@

(ğ)

ġĢ
(<)/?

(ğ)

ġĢ
(<)),< ∈ I8.

Excluding pixels with wet costs or with variance E
(ğ)

ġĢ
f 0.01,

LIEs correspond to pixels with the largest values of Λ
(ğ)

ġĢ
(~

(ğ)

ġĢ
), 1 f

:, ; f 256. This means that LIEs are acquisition noise outliers in

places where the embedding is likely to make an embedding change

(low cost). Based on this criterion, we next describe two kinds of

experiments (tests) that assess the e�ect of LIEs on the soft output

of a data driven steganalyzer.

5.1 Deletion test

In the deletion test, which we sometimes call “de-embedding test,”

we suppress LIEs one by one to make a cover image identi�ed as

stego look progressively more like a cover. Given a cover image x(ğ)

detected as a strong false alarm, its pixels are sorted by Λ
(ğ)

ġĢ
(G

(ğ)

ġĢ
).

Then, these pixels are modi�ed

G
(ğ)

ġĢ
→ G

(ğ)

ġĢ
+ b

(ğ)

ġĢ
, where (13)

b
(ğ)

ġĢ
= arg min

ď ∈{−1,1}

{
Λ
(ğ)

ġĢ
(G

(ğ)

ġĢ
+ b)

}
. (14)

The idea is to modify the pixels by ±1 (de-embed) in such a way

that decreases the Warden’s detection statistic to make them look

more like covers, and observe how the output ofWarden’s empirical

(trained) detector changes with more pixels being de-embedded.

We remind that just because the de-embedding changes are selected

to decrease the LRT of the cover does not automatically mean that

the output of a trained empirical detector will consistently decrease

with each de-embedding change because the empirical detector is

unlikely to coincide with the theoretically most powerful detector.

If it does so most of the times, it constitutes some evidence that the

empirical detector is aware of the acquisition model.

5.2 Insertion test

This is a complement of the deletion test. Here, we begin with

a cover image strongly identi�ed as cover (taken from the left

tail of the detector’s output distribution) and introduce embedding

changes at pixels so that the LRT increases the most. In other words,

we intentionally introduce LIEs. Formally, we �rst compute for each

8, :, ;

[
(ğ)

ġĢ
= arg max

Ĉ∈{−1,1}

{
Λ
(ğ)

ġĢ
(G

(ğ)

ġĢ
+ [)

}
(15)

and then order the pixels by Λ
(ğ)

ġĢ
(G

(ğ)

ġĢ
+ [

(ğ)

ġĢ
) from the largest to

the smallest and replace one-by-one G
(ğ)

ġĢ
→ G

(ğ)

ġĢ
+ [

(ğ)

ġĢ
. Again, we

observe how these “embedding changes” a�ect the soft output of

Warden’s empirical detector.

6 EXPERIMENTS

The existence, strength, and role of LIEs will likely depend on

the dataset, the detector, and the embedding algorithm. To ob-

tain a more comprehensive picture, in this section we work with

two datasets described above, three types of detectors (SRNet [2]

trained for a �xed payload, for a uniform mixture of payloads, and

a quantitative detector), and for three embedding algorithms, S-

UNIWARD [10], MiPOD [19], and non-adaptive Least Signi�cant

Bit Matching (LSBM). Finally, we also study whether LIEs a�ect

the older generation of detectors implemented as classi�ers with

rich media models.
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Figure 2: The e�ect of modifying cover pixels in strong false alarms C+ (left pair of subplots) and in strong covers C− (right

pair) as described in the deletion and insertion tests, respectively. The left charts show the output 3 (x) averaged over the

corresponding subsets of covers x. The normalized histograms display the number of pixels that had to be modi�ed to bring

the output below 0.5 (for false alarms) and above 0.5 (for strong covers). Blue corresponds to the actual deletion and insertion

tests while red is used for the same experiment but with a random selection of pixels instead. Top: SENSED, Bottom: VNG.

S-UNIWARD, SRNet trained for a �xed payload of 0.4 bpp.

The deletion and insertion tests were run for the 3% right and

3% left detector’s output outliers – cover images identi�ed strongly

as stego (false alarms) and images identi�ed strongly as covers. For

both SENSED and VNG datasets 3% corresponds to 206 images.

Formally, cover images x selected for the deletion test came from

the subset

C+
= {x|3 (x) > C+} (16)

with the threshold C+ determined from the condition

P{3 (x) > C+ |x cover} = 0.03, (17)

and for the insertion test from

C−
= {x|3 (x) < C−} (18)

P{3 (x) < C− |x cover} = 0.03. (19)

Then, the pixels in these images were modi�ed one by one as

described for the respective tests in the previous section. After each

modi�cation, they were run through the detector 3 to observe the

e�ect on the output. Figure 1 is a visual interpretation of how the

sets C−, C+ are formed based on the detector’s output distribution.

Figure 2 shows the results of the deletion and insertion tests

on SENSED (top) and VNG (bottom) datasets. The left subplots

show the output 3 (x) averaged over covers from C+ (top) and

C− (bottom) as a function of the modi�ed pixels (blue). The right

subplots show the normalized histogram of the number of pixels

needed to change the decision of the Bayesian detector (to bring the

output below 0.5 for deletion and above 0.5 for insertion). Red color

in these plots is used for the same test (the pixels are modi�ed in

the same fashion) but when the pixels are selected at random from

the images. This serves as a baseline. The detector is the SRNet [2]

trained for S-UNIWARD with stego images embedded with a �xed

payload 0.4 bpp. The details of the network training and the training,

validation, and test sets are described in Section 6.2.

The �gure clearly shows that selecting the pixels based on the

LRT rather than randomly is much more e�ective. For example, on

average for the SENSED dataset, 1.03% of pixels (674 pixels) need

to be de-embedded to bring the output below 0.5. On the other

hand, when introducing LIEs as in the insertion test, fewer than

0.3% of pixels (190 pixels) need to be modi�ed in covers strongly

identi�ed as cover (from C−) to make them into a false alarm for

the Bayesian detector. In contrast, changing the same number of

randomly selected pixels (red curve) has virtually no e�ect on the

detector’s output.4 For randomly selected pixels, we observed that

on average 24.97% (15,707) pixels must be de-embedded to decrease

the output below 0.5 in the deletion test, whereas 3.06% of the pixels

(2,003 pixels) need to be modi�ed to increase the output above 0.5

in the insertion test. For an informative histogram of LIEs, we

clipped the histograms for randomly selected pixels. These results

con�rm our intuition that acquisition noise outliers as identi�ed

by Warden’s LRT are indeed in�uential (LIEs).

Despite the fact that the MVG model with a diagonal covariance

is only an approximation for the VNG dataset (in contrast to the

SENSED dataset), the LIEs seem to have a stronger impact on the

detector’s output in terms of the number of pixels needed to achieve

the respective goals in the deletion and insertion tests.

Figure 3 shows the actual output 3 (x) for each image from x ∈

C+ ( x ∈ C−) as a function of the number of modi�ed pixels in the

4We note that an image embedded with payload 0.4 bpp on average contains 6% of
modi�ed pixels (4000).
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Figure 3: The actual rather than averaged outputs 3 (x) across

images x from C+ (top) and C− (bottom) for the deletion and

insertion tests reported in Figure 2.

deletion (top) and insertion (bottom) tests (instead of the averaged

outputs) for the same setup as in Figure 2. This is informative

because it shows that not all changes lead to a decrease of the

detector’s output. This is because the empirical detector does not

coincide with the LRT used to identify LIEs. In general, however,

suppressing / introducing LIEs does have the expected e�ect.

In Figure 4, we show an example of a textured image (top) and

a smooth image (bottom) from the VNG dataset with LIEs to be

de-embedded highlighted in yellow. The top subplot clearly com-

municates that LIEs are more likely to be in the textured areas of

the image, i. e., with su�ciently large VġĢ . Conversely, in the bot-

tom subplot we observe that LIEs are more likely to cluster around

pixels with a small noise variance EġĢ . This is because in this case

the quantization to 8 bits has a larger e�ect on an unquantized

acquisition noise outlier—it can in fact suppress it or make it an

ever larger outlier. In the latter case, when EġĢ < 1 the quantized

value may thus look like an embedding change.
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Figure 4: The distribution of 1000 LIEs with the largest LRT

highlighted in yellow (deletion test) in two cover images from

the VNG dataset. LIEs are pixel outliers w.r.t. the acquisition

noise in areas with low embedding costs and small sigma (see

the scatter plots). The LRT was evaluated for S-UNIWARD.

The two cover images were selected from C+ of SRNet trained

on a �xed payload 0.4 bpp.

In the following set of experiments, we studied how LIEs are

a�ected by the embedding algorithm. To this end, we executed the

same experiment as the one reported in Figure 2 but with the VNG

dataset, SRNet trained for a �xed payload 0.4, and non-adaptive

LSBM and MIPOD. As shown in Figure 5, contrasting the �gures

for LSBM (top) and the content adaptive MiPOD (bottom) and S-

UNIWARD (Figure 2, bottom), the e�ect of LIEs in the deletion test

is the strongest for MiPOD, while for the insertion test LIEs are the

strongest for S-UNIWARD.

In our �nal experiment with CNNs, we studied how the deletion

and insertion tests are a�ected by how the detector is trained. In-

stead of working with a detector trained for a �xed payload, we use

a detector trained on a uniform mixture of payloads from the set

P = 0.05, 0.1, 0.15, 0.2, 0.3, . . . , 1.0 (20)

and a quantitative detector that outputs an estimate of the secret

payload size. The output of the quantitative detector is denoted Û :

I256×256
8 → R as it represents the unnormalized predicted payload

and does not undergo the softmax normalization. The steganalysis

hypothesis test for such detectors is no longer simple due to the

unknown payload. Thus, we need to change the criterion for �nding

LIEs. To this end, we convert the composite test to a simple test by

imposing a prior on the unknown payload – the uniform prior. This

prior makes sense since the data driven detectors were trained on

a uniform mixture of payloads from P. Mathematically, we replace
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Figure 5: [LSBM and MiPOD] The e�ect of modifying cover pixels in strong false alarms C+ (left) and in strong covers C−

(right) as described in the deletion and insertion tests, respectively. The left subplots show the output 3 (x) averaged over the

corresponding subsets of covers x. The normalized histograms shows the number of pixels that had to be modi�ed to bring

the output below 0.5 (for false alarms) and above 0.5 (for strong covers). Blue corresponds to the actual deletion and insertion

tests while red is used for the same experiment but with random selection of pixels instead. Top: LSBM, Bottom: MiPOD, VNG

dataset, SRNet trained for a �xed payload of 0.4 bpp.
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Figure 6: [Detector trained on uniform payloads] The e�ect of modifying cover pixels in strong false alarms C+ (left) and

in strong covers C− (right) as described in the deletion and insertion tests, respectively. The left charts show the output 3 (x)

averaged over the corresponding subsets of covers x. The normalized histograms show the number of pixels that needed to

be modi�ed to bring the output below 0.5 (for false alarms) and above 0.5 (for strong covers). Blue corresponds to the actual

deletion and insertion tests while red is used for the same experiment but with random selection of pixels instead. S-UNIWARD,

VNG dataset, SRNet trained on a uniform mixture of payloads from P.
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where @
(ğ)

ġĢ
(<) is the stego mixture averaged over all payloads from

P .

Figure 6 displays the results for S-UNIWARD, the VNG dataset,

and SRNet trained on a uniform mixture of payloads from P. We

observe that the deletion test for this detector is slightly less success-

ful than for a detector trained on a �xed payload (Figure 2 bottom

left). We attribute it to the fact that the detector trained on a range

of payloads is more sensitive to embedding since it sees smaller

payloads during training. Thus de-embedding does not have such

a strong e�ect. On the other hand, the insertion test works better

since fewer changes are enough to trigger such a detector (the blue

curve is steeper than in Figure 2 bottom right).

Figure 7 displays the results for S-UNIWARD, VNG dataset, and

a quantitative SRNet detector implemented as in [11]. Unlike binary

detectors, a quantitative detector is trained to increase its output

proportionally w.r.t. embedded payload size. Additionally, its out-

put is expected to be contained within a certain range. Thus, the

deletion and insertion tests are signi�cantly less sensitive to input
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Figure 7: [Quantitative detector] The e�ect of modifying cover pixels in strong false alarms C+ (left) and in strong covers

C− (right) as described in the deletion and insertion tests, respectively. The charts show the output Û (x) averaged over the

corresponding subsets of covers x. Blue corresponds to the actual deletion and insertion tests while red is used for the same

experiment but with random selection of pixels instead. S-UNIWARD, VNG dataset, SRNet trained as a quantitative detector.
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Figure 8: [SRMQ1 with LCLC] The e�ect of modifying cover pixels in strong false alarms C+ (left) and in strong covers C−

(right) as described in the deletion and insertion tests, respectively. The left subplots show the output 3 (x) averaged over the

corresponding subsets of covers x. The right subplots are normalized histograms of the number of pixels that needed to be

modi�ed to bring the output below 0.5 (for false alarms) and above 0.5 (for strong covers). Blue corresponds to the actual

deletion and insertion tests while red is used for the same experiment but with random selection of pixels instead. S-UNIWARD,

VNG dataset, SRM with LCLC trained for a �xed payload of 0.4 bpp.

perturbations and the average detector’s output is approximately

linear w.r.t. the number of modi�ed pixels.

6.1 LIEs for classi�ers with rich models

Finally, we investigate whether older detectors implemented as

classi�ers with rich media models are also a�ected by LIEs. Our

expectation is that they will be a�ected to a much lesser degree

because, unlike CNNs, such detectors are not as well equipped

to see local artifacts. Our experiments con�rm this expectation.

Figure 8 shows the equivalent of Figure 2 (bottom) but executed

with the spatial rich model (SRMQ1) [8] and the LCLC classi�er [6].

For cover x, we applied the sigmoid function to the projection

of its feature vector f (x) ∈ RĦ onto the weight vector w ∈ RĦ

(? = 12, 753 for SRMQ1) to give it the same scaling as a network

output 3 (x):

3 (x) =
1

1 + 4−f (x) ·w
. (22)

While the LIEs do have a larger e�ect on the detector output than

randomly selected pixels (red curves), their e�ect is much weaker

than for the SRNet. In particular, note that for the vast majority

of images from C+ and C− even the maximal number of changes

(2000 and 300) failed to change the image class.

6.2 Detector training

In this subsection, we describe the training of all detectors. Both

SENSED and VNG datasets were split into TRN, VAL, and TST

subsets with size 80%, 8%, and 12% of total dataset size. For all

setups, SRNet was seeded with JIN-SRNet [3] weights. For the �xed-

payload detector, SRNet was trained for 100 epochs with the adamw
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Detector type SUNI, SENSED SUNI, VNG MiPOD, VNG LSBM, VNG

0.4 bpp SRNet ČE 0.1641 0.2015 0.1913 0.1728

multi-payload SRNet ČE - 0.2525 - -

LCLC SRMQ1 ČE - 0.3163 - -

quantitative SRNet MSE - 0.0533 - -

Table 1: Detection performance on the test set for all detectors used in the experiments. A dash indicates that a detector was

not used. Each column corresponds to a speci�c embedding algorithm and dataset type, while the second column speci�es the

performance measure. The �rst three rows are for a binary detector hence the performance is measured with ČE, while the last

row corresponds to a quantitative detector evaluated using MSE.

optimizer and learning rate 10−3. The learning rate policy was set

to onecycle.

For training the detector on a range of payloads on the VNG

dataset, we sampled stego images with payloads uniformly ran-

domly from P while making sure the payloads do not exceed the

maximum embedding capacity. During training, we sampled only

10% of the entire training set every epoch. The training parameters

are the same as above (for the �xed-payload detector).

In order to train the quantitative detector, we sampled six pay-

loads ranging from 0.001 to 1.5 bpp spaced with 0.001 bpp per

each image. The largest payload was again limited by the embed-

ding capacity of each cover image. For training, we also subsample

only 10% of the training set every epoch with the same training

parameters as above.

Table 1 shows the detection performance of all detectors used in

our study.

7 CONCLUSIONS

In this paper, we study the e�ect of acquisition noise on false alarms

of data-driven detectors built as convolutional neural networks and

classi�ers with rich media models. We present evidence that, for

detectors implemented as CNNs, a relatively small number of pixel

outliers introduced by the image acquisition process can skew the

detector’s output to produce a strong false alarm. To verify this

hypothesis, we work with a dataset of images for which we can

realistically simulate multiple acquisitions of the same scene by

adding heteroscedastic (ISO) noise in the RAW domain. This allows

us to estimate a statistical model in the developed domain and

identify pixels that contribute the most to the likelihood ratio test

(LRT) for steganography. We call such cover elements LIEs, Locally

In�uential Elements. We stress that LIEs are identi�ed from the

model and with no feedback from the data driven detector.

To demonstrate that LIEs have a major e�ect on the network de-

tector output, we execute two kinds of complementary experiments

– deletion and insertion tests. In the deletion test, we work with

the right tail outliers of the network output (strong false alarms)

and “de-embed” the LIEs in these images to decrease the LRT. In

the insertion test, we start with a strong cover – a left tail outlier

of the network output – and introduce outliers by modifying the

pixels by ±1 to introduce the strongest LIEs. In both tests, merely

hundreds of changes are needed to make a strong false alarm be

classi�ed as cover and to make a strong cover be misclassi�ed as

stego. In contrast, executing the same number of de-embedding

and embedding changes to randomly selected pixels has virtually

no e�ect on the detector’s output.

We widen our study to include three embedding algorithms,

the content-adaptive S-UNIWARD, MiPOD, and non-adaptive LSB

matching. We also work with two types of datasets, one where

the adopted statistical model of acquisition noise in the developed

domain is true and one where it is only an approximation. We also

study how the way the detector is trained (binary detector for a

�xed payload, for a mixture of payloads, and a quantitative detector)

a�ects LIEs and their e�ect on detection.

In contrast, LIEs have a much weaker e�ect on detectors trained

as classi�ers with the spatial rich model. This is to be expected

since such detectors use global image descriptors and thus are less

sensitive to local artifacts. Of course, this by no means makes these

detectors superior to CNNs as they lag behind CNNs in basically

every respect.

Finally, we make some comments on LIEs vs. LDEAs [24] (Lo-

cally Detectable Embedding Artifacts) and on LIEs in the JPEG

domain. Starting with the latter, unlike LDEAs, which are far more

likely to be present in the JPEG domain due to the larger energy

of steganographic modi�cations (due to quantization), LIEs are

more likely to be present in the spatial domain because the acquisi-

tion noise is largely decimated in JPEG images. Having said this,

LIEs might be present for the highest quality factors. Based on our

analysis, which was con�ned to the spatial domain, we have not

seen much di�erence in terms of LIEs presence and their strength

w.r.t. the embedding algorithm. The cost-based S-UNIWARD, the

model-based MiPOD, and the non-adaptive LSBM all exhibited LIEs

and the network detectors trained to detect them were similarly

responsive to LIEs.

Our future directions include using more complex models of

the acquisition noise in the developed domain (Markov Random

Fields) to better identify in�uential cliques of pixels in datasets with

strong dependencies among neighboring pixels. This would require

rethinking the concept of a LIE to a group of pixels. Also, LIEs could

be used as a means to understand how a data driven detector works.

Say, a detector utilizes a compatibility or soft compatibility among

pixel noise residuals for detection (as it is the case for e. g. “freshly

interpolated” color images [9]). Then, identifying pixels based on

a stego mixture for pixels will be less e�ective than forming the

statistic for identifying LIEs through the proper test for the residuals.

Once the proper domain and a statistical model is found in terms of



IH&MMSec ’25, June 18–20, 2025, San Jose, California Edgar Kaziakhmedov, Jessica Fridrich, and Patrick Bas

strong LIEs, we will have discovered something fundamental about

the inner workings of the trained detector.
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