Spectrum Estimation

Lim & Oppenheim: Ch. 2
Hayes: Ch. 8
Porat Ch. 13
Introduction & Issues
Recall Definition of PSD

Given a WSS random process $x[k]$ the PSD is defined by:

$$S_x(\omega) = \lim_{M \to \infty} E\left\{ \frac{1}{2M+1} \left| \sum_{n=-M}^{M} x[n] e^{-j\omega n} \right|^2 \right\}$$ \hspace{1cm} (\star)

Warning: Ch. 2 of L&O uses “ω” for the DT frequency whereas Porat uses “Ω”. Also, Hayes expresses DTFTs (and therefore PSDs) in terms of $e^{j\omega}$; it means the same thing – it is just a matter of notation. Hayes notation is more precise when you consider going from the ZT $H(z)$ to the frequency response $H(e^{j\omega}) = H(z)|_{z=e^{j\omega}}$.

Recall the Wiener-Khinchine Theorem:

$$S_x(\omega) = F\{r_x[k]\}$$ \hspace{1cm} (\star \star \star)

$$r_x[k] = E\{x[n]x^*[n+k]\}$$

ACF of RP $x[n]$
Problem of PSD Estimation

1. Both (★) & (★★) involve ensemble averaging **BUT** in practice we get only one realization from the ensemble
2. Both (★) & (★★) use a Fourier transform of infinite length **BUT** in practice we get only a **finite** number of samples.
 (Note: a finite # of samples allows only a finite # of ACF values)

(★) & (★★) motivate two approaches to PSD estimation:
1. Compute the DFT of the signal and then do some form of averaging
2. Compute and estimate of the ACF using some form of averaging and then compute the DFT

Both of these approaches are called “Classical” Nonparametric Approaches – they strive to do the best with the available data w/o making any assumptions other than that the underlying process is WSS.
The “Modern” Parametric Approach

There is a so-called “Modern” approach to PSD estimation that tries to deal with the issue of having only a finite # of samples:

→ Assume a recursive model for the ACF
→ Allows recursive extension of ACF using the known values

Example Model

\[r_x[k] = -a_1 r_x[k - 1] - a_2 r_x[k - 2] - \cdots - a_p r_x[k - p], \quad k \geq p + 1 \]

We’ll see that for this approach all we’ll need to do is estimate the model parameters \{a_i\} and then use them to get an estimate of the PSD …. Thus, this approach is called “Parametric”
Review of Statistics

Before we can really address the issue of estimating a PSD we need to review a few issues from statistics.

What are we doing in PSD Estimation?

Given: Finite # of samples from one realization

Get: Something that “resembles” the PSD of the process

Each Signal Realization gives a different PSD Estimate

Each PSD Estimate is a Realization of a Random Process
Review of Statistics (Cont.)

Thus… must view PSD Estimate as a Random Process

Need to characterize its mean and variance:
- Want Mean of PSD Estimate = true PSD
- Want Var of PSD Estimate = “small”

To make things easier to discuss, we use a slightly different estimation problem to illustrate the ideas… Consider the process

\[x[n] = A + w[n] \]

Constant \rightarrow AWGN, zero-mean, \(\sigma^2 \)

Given a finite set of data samples \(x[0], ..., x[N-1] \)… estimate \(A \).
Reasonable estimate is:

\[\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \] “sample mean”

For each realization of \(x[n] \) you get a different value for the estimate of \(A \).
Review of Statistics (Cont.)

We want two things for the estimate:
1. We want our estimate to be “correct on average”:
 \[E\{\hat{A}\} = A \]

 If this is true, we say the estimate is **unbiased**.
 (Ch. 2 of L&O shows that the sample mean is unbiased)
 If it is not true then we say the estimate is **biased**.
 If it is not true, but
 \[\lim_{N \to \infty} E\{\hat{A}\} = A \]
 we say that the estimate is **asymptotically unbiased**.

2. We want small fluctuations from estimate to estimate:
 \[\text{var}\{\hat{A}\} = \text{small} \]
 Also, we’d like \(\text{var}\{\hat{A}\} \to 0 \) as \(N \to \infty \)
 (Ch. 2 of L&O shows that this is true for the sample mean)
Review of Statistics (Cont.)

Can capture both mean and variance of an estimate by using Mean-Square-Error (MSE):

\[MSE\{\hat{A}\} = \text{var}\{\hat{A}\} + B^2 \{\hat{A}\} \]

where \(B\{\hat{A}\} = A - E\{\hat{A}\} \)

Usual goal of Estimation: Minimize MSE
- Minimize Bias
- Minimize Variance

For PSD Estimation want:

\[E\{\hat{S}_x(\omega)\} = S_x(\omega) \]
\[\text{var}\{\hat{S}_x(\omega)\} = \text{small} \]
Non-Parametric Spectral Estimation
H-8.2, LO-2.4

- Periodogram
- Windowed Periodogram
- Averaged Periodogram
- Windowed & Averaged Periodogram
- Blackman-Tukey Method
- Minimum Variance Method
Family of Non-Parametric Methods

“Classical” Methods (FT-Based Methods)
- Periodogram-Based
 - Periodogram
 - Modified
 - Bartlett
 - Welch

ACF-Est.-Based
- Blackman-Tukey

“Non-Classical” Methods (Non-FT-Based Methods)
- Filter Bank View
 - Minimum Variance
Family of “Classical” Methods

\[
S_x(\omega) = \lim_{M \to \infty} E \left\{ \frac{1}{2M+1} \sum_{n=-M}^{M} x[n] e^{-j\omega n} \right\}^2
\]

\[
S_x(\omega) = \sum_{k=-\infty}^{\infty} r_x[k] e^{-j\omega k}
\]

Periodogram

- Modified Periodogram (Use Window)
- Bartlett’s Method (Average Periodograms)
- Welch’s Method (Average Windowed Periodograms)

Blackman-Tukey
The Periodogram
Periodogram - Definition

Based on:

\[S_x(\omega) = \lim_{M \to \infty} E\left\{ \frac{1}{2M+1} \sum_{n=-M}^{M} x[n] e^{-j\omega n}\right\}^2 \]

In practice we have one set of finite-duration data. Two Practical Problems:
1. Can’t do the expected value
2. Can’t do the limit

The periodogram is a method that ignores them both!!

\[\hat{S}_{PER}(\omega) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] e^{-j\omega n}\right|^2 \]

In practice we compute this using the DFT (possibly using zero-padding) – which computes the DTFT at discrete frequency points (“DFT Bins”)

H-8.2.1
Periodogram - Computation

In practice we compute this using the DFT(FFT) (usually using zero-padding) – which computes the DTFT at discrete frequency points (“DFT Bins”):

$$\hat{S}_{PER}[k] = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/N_z} \right|^2$$

$$\omega_k = \frac{2\pi k}{N_z}$$

$N = \text{number of signal samples}$

$N_z = \text{DFT size – after zero-padding}$

Signal Samples

$$x[0]$$

$$\ldots$$

$$x[N-1]$$

Zero-Pad to N_z

DFT (FFT)

$|\cdot|^2$

$\hat{S}_{PER}[k]$
Periodogram – Viewed as Filter Bank

Although we ALWAYS implement the periodogram using the DFT, it is helpful to interpret it as a filter bank.

Define the impulse response of an FIR filter as:

\[
 h_i[n] = \begin{cases}
 \frac{1}{N} e^{jn\omega_i}, & 0 \leq n < N \\
 0, & \text{otherwise}
 \end{cases}
\]

Frequency Response of this filter is:

\[
 H(\omega) = \sum_{n=0}^{N-1} h_i[n] e^{-jn\omega} = e^{-jn(\omega-\omega_i)(N-1)/2} \frac{\sin[N(\omega-\omega_i)/2]}{N \sin[(\omega-\omega_i)/2]}
\]

<< See Figure 8.3 in Hayes >>
Periodogram – Viewed as Filter Bank (cont.)

Now the output of the i^{th} filter is:

$$y_i[n] = x[n] * h_i[n] = \sum_{k=n-N+1}^{n} x[k]h_i[n-k]$$

$$= \frac{1}{N} \sum_{k=n-N+1}^{n} x[k]e^{j(n-k)\omega_i}$$

Now one estimate of the power at the output of this filter is: $|y_i[n]|^2$ for any value of n. Choosing $n = N-1$ gives the periodogram:

$$|y_i[N-1]|^2 = \left| \frac{1}{N} \sum_{k=0}^{N-1} x[k]e^{j(N-1-k)\omega_i} \right|^2 = \left| e^{j(N-1)\omega_i} \right|^2 \left| \frac{1}{N} \sum_{k=0}^{N-1} x[k]e^{-j\omega_i} \right|^2$$

$$= \left| \frac{1}{N} \sum_{k=0}^{N-1} x[k]e^{-j\omega_i} \right|^2 = \hat{N}\hat{S}_{PER}(\omega)$$

<< See Figure 8.4 in Hayes >>
Periodogram – Performance

For a good PSD estimate we’d like to have (at the very least):

$$\lim_{N \to \infty} E\{ \hat{S}_x(\omega) \} = S_x(\omega) \quad \text{“Asymp. UnBiased”}$$

$$\lim_{N \to \infty} \text{var}\{ \hat{S}_x(\omega) \} = 0$$

Actually, we would prefer it to be unbiased even for finite N

Does the Periodogram have these characteristics????

Let’s Find Out!!!
Periodogram – Performance: Bias

Property #1: The Periodogram is Biased.

Property #2: But… The Periodogram is *Asymptotically Unbiased.*

Proof: Taking the EV of the periodogram gives

\[
E\{\hat{S}_{PER}(\omega)\} = \frac{1}{N} E\left\{ \left| \sum_{n=0}^{N-1} x[n] e^{-j\omega n} \right|^2 \right\}
\]

\[
= \frac{1}{N} E\left\{ \left[\sum_{n=0}^{N-1} x[n] e^{-j\omega n} \right] \left[\sum_{m=0}^{N-1} x^*[m] e^{j\omega m} \right] \right\}
\]

\[
= \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} r_x[n-m] e^{-j\omega(n-m)}
\]

\[
= \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N} \right) r_x[k] e^{-j\omega k}
\]

\[
= \frac{1}{2\pi} S_x(\omega) \ast \text{circ} W_B(\omega) \neq S_x(\omega)
\]

“Sum On Diagonals”

\[r_x[n-m] \text{ is constant on each diagonal}\]

Bartlett (Triangle) Window
Periodogram – Performance: Bias (cont.)

Proof (cont.): This shows that the Periodogram is Biased. The bias comes from the smoothing effect of Bartlett window. (Smoothing also reduces the resolution of sharp spectral features).

\[
E\{\hat{S}_{PER}(\omega)\} = \frac{1}{2\pi} S_x(\omega) \ast W_B(\omega)
\]

But… as \(N \to \infty \) the Bartlett Kernel tends to a delta function in the frequency domain, or – equivalently – in the TD the Bartlett window tends 1:

\[
\lim_{N \to \infty} E\{\hat{S}_{PER}(\omega)\} = \lim_{N \to \infty} \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N} \right) r_x[k] e^{-j\omega k} \\
\to 1
\]

\[
= \sum_{k=-\infty}^{\infty} r_x[k] e^{-j\omega k} = S_x(\omega)
\]

Thus, the Periodogram is Asymptotically Unbiased.
Periodogram – Performance: Variance

Property #3: The variance of the Periodogram does NOT (in general) tend to zero as \(N \to \infty \).

Proof: Difficult to prove for general case… so this is proved **under the assumption**: complex-valued white Gaussian process w/ zero mean and variance \(\sigma^2 \).

Under this assumption, the true PSD and ACF are:

\[
S(\omega) = \sigma^2, \quad \forall \omega \quad \& \quad r_x[k] = \sigma^2 \delta[k]
\]

The variance of the periodogram is what we want to analyze and is given by:

\[
\text{var}\{\hat{S}_{PER}(\omega)\} = E\{\hat{S}_{PER}^2(\omega)\} - \left[E\{\hat{S}_{PER}(\omega)\} \right]^2
\]

Look at this term first: “Bias Term”
Periodogram – Performance: Variance (cont.)

Proof (cont.): So from our previous analysis of bias (and our assumptions on the process) we know that the second term is:

\[
\left[E\left(\hat{S}_{PER}(\omega) \right) \right]^2 = \left[\sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N} \right) r_x[k] e^{-j\omega k} \right]^2
\]

\[
= \left[\sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N} \right) [\sigma^2 \delta[k]] e^{-j\omega k} \right]^2 = \sigma^4 \left[\left(1 - \frac{|k|}{N} \right) e^{-j\omega k} \right]_{k=0}^2
\]

\[
= \sigma^4
\]

(Aside: under our assumptions the periodogram is unbiased!)

So the variance of periodogram is now…

\[
\text{var}\left\{ \hat{S}_{PER}(\omega) \right\} = E\left\{ \hat{S}_{PER}^2(\omega) \right\} - \sigma^4 \quad (\star)
\]

Now.. Look at This Term
Periodogram – Performance: Variance (cont.)

Proof (cont.): As a means of looking at this first term we consider:

\[
E\{\hat{S}_{PER}(\omega_1)\hat{S}_{PER}(\omega_2)\} = \mathbb{E}\left\{\frac{1}{N} \sum_{l=0}^{N-1} x[l] e^{-j\omega_l} \right\}^2 \mathbb{E}\left\{\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\omega_n} \right\}^2
\]

\[
\left[\sum_{k=0}^{N-1} x[k] e^{-j\omega_k} \right] \left[\sum_{l=0}^{N-1} x[l] e^{-j\omega_l} \right]^* \left[\sum_{m=0}^{N-1} x[m] e^{-j\omega_m} \right] \left[\sum_{n=0}^{N-1} x[n] e^{-j\omega_n} \right]^*
\]

Using these “call-outs” and manipulating gives:

\[
E\{\hat{S}_{PER}(\omega_1)\hat{S}_{PER}(\omega_2)\} = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} E\{x[k] x^*[l] x[m] x^*[n]\} \exp\{-j[(k-l)\omega_1 + (m-n)\omega_2]\} = ????
\]
Periodogram – Performance: Variance (cont.)

Proof (cont.): Now what is this Expected Value???? Well… since we assumed the process is Gaussian we can use a standard result for complex Gaussian RVs:

\[E\{x[k]x^*[l]x[m]x^*[n]\} = E\{x[k]x^*[l]\}E\{x[m]x^*[n]\} + E\{x[k]x^*[n]\}E\{x[m]x^*[l]\} \]

Now… using this result together with the assumption of whiteness:

\[E\{x[l]x[k]x[n]x[m]\} = \sigma^4 [\delta[k-l]\delta[m-n] + \delta[k-n]\delta[m-l]] \]

Now… using this result in (⋆) gives:
Periodogram – Performance: Variance (cont.)

\[
E\left\{\hat{S}_{PER}(\omega_1)\hat{S}_{PER}(\omega_2)\right\} \\
= \frac{\sigma_4}{N^2} \left[\sum_{l=0}^{N-1} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} \delta[k-l]\delta[m-n] \exp\{-j[\omega_1(k-l) + \omega_2(m-n)]\} \right. \\
+ \left. \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} \delta[k-n]\delta[m-l] \exp\{-j[\omega_1(k-l) + \omega_2(m-n)]\} \right] \\
= \frac{\sigma_4}{N^2} \left[\sum_{l=0}^{N-1} \sum_{n=0}^{N-1} 1 + \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} \exp\{-j[\omega_1(k-l) - \omega_2(k-l)]\} \right] \\
= \frac{\sigma_4}{N^2} \left[\sum_{l=0}^{N-1} \sum_{n=0}^{N-1} 1 + \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} \exp\{-j[(\omega_1 - \omega_2)(k-l)]\} \right] \\
= N^2 \tag{Use “Sum On Diagonals” Trick}
Periodogram – Performance: Variance (cont.)

Proof (cont.):

\[
E\left\{ \hat{S}_{PER}(\omega_1)\hat{S}_{PER}(\omega_2) \right\} = \frac{\sigma^4}{N^2} \left[N^2 + N \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N} \right) \exp\left\{ -j[(\omega_1 - \omega_2)k] \right\} \right]
\]

Now the FT of the Bartlett window is:

\[
F\{w_B[k]\} = \left(\frac{\sin(N\omega/2)}{\sin(\omega/2)} \right)^2
\]

So using it in the above result gives:

\[
E\left\{ \hat{S}_{PER}(\omega_1)\hat{S}_{PER}(\omega_2) \right\} = \sigma^4 \left[1 + \left(\frac{\sin[N(\omega_1 - \omega_2)/2]}{N\sin[(\omega_1 - \omega_2)/2]} \right)^2 \right]
\]
Periodogram – Performance: Variance (cont.)

Proof (cont.): To find the first term in the variance expression of interest (∗) we must set \(\omega = \omega_1 = \omega_2 \) in the above expression to get:

\[
E\left\{ \hat{S}_\text{PER}^2(\omega) \right\} = 2\sigma^4
\]

Now using this in the expression for variance (∗) gives

\[
\text{var}\left\{ \hat{S}_\text{PER}(\omega) \right\} = E\left\{ \hat{S}_\text{PER}^2(\omega) \right\} - \sigma^4
\]

\[
= 2\sigma^4 - \sigma^4
\]

\[
\text{var}\left\{ \hat{S}_\text{PER}(\omega) \right\} = \sigma^4
\]

…which **DOES NOT** go to zero as \(N \to \infty \)
Periodogram – Performance: Covariance

Property #4: Increasing N leads to rapidly fluctuating periodograms (even where the true PSD is smooth).

“Proof”: Use the previous results, the covariance of the periodogram is given by

$$\text{cov}\{\hat{S}_{PER}(\omega_1)\hat{S}_{PER}(\omega_2)\} = E\{\hat{S}_{PER}(\omega_1)\hat{S}_{PER}(\omega_2)\} - E\{\hat{S}_{PER}(\omega_1)\}E\{\hat{S}_{PER}(\omega_2)\}$$

$$= \sigma^4 \left[1 + \left(\frac{\sin[N(\omega_1 - \omega_2)/2]}{N \sin[(\omega_1 - \omega_2)/2]} \right)^2 \right] - \sigma^4$$

$$= \sigma^4 \left(\frac{\sin[N(\omega_1 - \omega_2)/2]}{N \sin[(\omega_1 - \omega_2)/2]} \right)^2$$

Covariance is a measure of how correlated two RVs are. Thus, $\text{cov}(X,Y)=0$ indicates that there is a high probability that X & Y will be very unalike.

Now, the equation above indicates there are (ω_1,ω_2) pairs for which the cov of the periodogram is zero.

⇒ **Periodogram Fluctuates Rapidly from freq-to-freq**
Periodogram – Performance for Non-White RP

The above analysis was done for white noise. Hayes p. 407 gives an argument that shows similar results for the non-white case:

\[
\text{var}\{\hat{S}_{\text{PER}}(\omega)\} \approx S_x^2(\omega)
\]

\[
E\{\hat{S}_{\text{PER}}(\omega_1)\hat{S}_{\text{PER}}(\omega_2)\} \approx S_x(\omega_1)S_x(\omega_2)\left[1 + \left(\frac{\sin[N(\omega_1 - \omega_2)/2]}{N \sin[(\omega_1 - \omega_2)/2]}\right)^2\right]
\]

\[
\text{cov}\{\hat{S}_{\text{PER}}(\omega_1)\hat{S}_{\text{PER}}(\omega_2)\} \approx S_x(\omega_1)S_x(\omega_2)\left(\frac{\sin[N(\omega_1 - \omega_2)/2]}{N \sin[(\omega_1 - \omega_2)/2]}\right)^2
\]
Periodogram – Examples

1. **Bias – Effect of Window**
 Periodogram of Sinusoid: See Hayes Fig. 8.5

2. **Variance and Covariance**
 Periodogram of White Noise: See L&H Fig. 2.4
 Periodogram of Sinusoid: See Hayes Fig. 8.6

3. **Resolution – Effect of Window**
 Periodogram of 2 Sinusoids: See Hayes Fig. 8.8