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Human Perception Is an Integrated Process
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Simulation Fidelity Concept
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Working Definitions

• Cue 

- Stimulus elements or patterns which give an 
indication of system state.

• Integration:

– Ensuring that the critical cues are included

– Deleterious cues are eliminated

• Synchronization:

- Ensuring that critical temporal relationships 

are maintained
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Two Types Of Integration Errors

Including Spurious Cues

• Visual Anomalies 
– Sharp Surface Definition

– Level Of Detail Switching

– Aliasing

– Transport Delay

– Highly Saturated Colors

– Etc.

• Motion Anomalies
– Cueing Algorithm

– Hardware

– Control Force

Omitting Necessary Cues

• Limited Scene Content

• Limited FOV

• Limited Resolution

• No Motion and/or Force 
Cues when needed

Man-Machine Systems Laboratory
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Task and Feature Benefit

• Tasks showing transfer to aircraft
• Piloting tasks

• Features showing performance benefit
• Simulator features

• Features showing transfer benefit
oQuasi-transfer

oTransfer to aircraft
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Tasks Showing Transfer to Aircraft
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Features Showing Performance Benefit
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Features Showing Transfer Benefit
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Temporal Integration
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Delay vs Lag

Do they mean the same thing?
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Delay/Lag Definitions

• Delay is the dead time between an event 

and a reaction to that event, which is 

associated with sampling and 

computation. 

• Lag is the phase shift resulting from;

•System dynamics 

•System delay
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Sources of Delay

• Digital computer sampling

• Asynchronous computation

• Visual pipeline

• Motion cueing algorithm and closed 

loop control.
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Simulation Block Diagram
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Cue Synchronization
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System with Delay
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Measurement Of Temporal Distortions

• Two Measurement Domains

•Time domain

•Frequency domain

• Time Domain Techniques Are Most Often Used

• FAA Specifies Time Domain Measures for 

Level A-D Ratings

• Simulators May Be Optimized for Either 

Domain

Man-Machine Systems Laboratory

State University of New York  at Binghamton
18



Mathematical Representation of Delay
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Time Domain Measurement
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Frequency Domain Measurement
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Measurement Domain

� Delays observed in the time domain will 

manifest a phase lag

� Some phase lags may not be a consequence 

of  a pure delay.

�EG numerical integration errors

�System dynamics
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Analyzing the Effects of Transport Delay
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System Models
• A/C model

•Air speed 430 Kts

•Altitude 30000 Ft

• Pilot model

•Lateral control task

•With rate controller

•Lumped delay 
(neuromuscular & 
cognitive)

• Transport delay
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Time & Frequency Response for Different Delays
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Typical Visual System Architecture 
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Timing Diagram
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Manifestations of Temporal Distortion

• Operator performance

• Workload

• Human-machine system instabilities

• Poor handling quality rating

• Cyber sickness
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Results of Performance Studies
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Effects on Operator

• Pilot Induced 

Oscillation 

� Decrease damping ratio;

� Decrease phase margin;

� Possible instability.

• Root Mean Square 

Error (RMSE) in 

compensatory tasks 

shows that the system 

performance is 

degraded

• Cooper-Harper Ratings 

show that operator’s 

handling quality 

assessment is degraded.

• Control inceptor deflection 

and its PSD illustrate that 

the operator’s workload is 

increased..

• Potential for simulator 

sickness 
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Cooper-Harper Rating System
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Comparison of In-flight and 
Ground- based Delay Effects
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Motion Effects

• Adding Synchronized Motion Increases Delay Tolerance

Delay Tolerance
FIXED        MOVING
BASE           BASE

Bad Airplane (6) <47 ms <47 ms

Basic Airplane (5) 172 ms 297 ms

Good Airplane (3) 172 ms 422 ms

(MILLER AND RILEY, 1976)
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Effects of Delay on 
Performance and Training
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Surgeon Performance Data W/Delay
Subject #1: Knot Tie Time as a Function of Delay Time
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Compensation Techniques

• Integration algorithms

• Synchronize host computer to visual

• Simple predictors (extrapolators)

• Various Lead/Lag algorithms

• McFarland Predictor

• Sobiski/Cardullo Predictor

• Adaptive Algorithm

• Advanced State Space Compensator

Man-Machine Systems Laboratory
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Frequency Domain Comparison of 
Various Integration Algorithms
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Metrics

• Analytical

•Time response

•Frequency response

• Human operator in-the-loop

•RMS Error

•Power Spectral Density (PSD)

• Integrated PSD

•NASA TLX

Man-Machine Systems Laboratory
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Power Spectral Density (PSD) - Example
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Lead/Lag Compensator
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Phase and Gain Margin for Delayed Cases

Delay (s) 

frequency 

(rad/sec) 

Phase 

margin 

(deg) 

frequency 

(rad/sec) 

Gain 

margin 

(db) 

0 2.1582  44.5706 3.3518 1.4881 

.2 2.1582  19.6851 2.5531 1.1367 

.4 2.1582  -5.1603 2.0717 0.9751 

.8 2.1582  -53.8423 1.4831 0.8082 
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The McFarland Compensation Method
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• The McFarland compensator, a special integrator, uses 

the previous two steps of velocity to extrapolate or 

predict the compensated displacement.

• Where u is the displacement, v the velocity, subscript 

c the compensated and subscript d the delayed. 

• Coefficients b0-b2 are determined by tuning the 

sinusoidal input signal.

( ) ( ) ( ) ( ) ( )0 1 21 2= + + − + −c d d d du k u k bv k bv k bv k
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McFarland Coefficients
• The coefficients are given by:

• Where T is the sampling period, td time delay, and omega the 

upper limit of the pilot operational frequency, usually 3 Hz. 
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State Space System Representation

∫
x&

   x Ax Bu y Cx Du= + = +&

 System Matrix;   B  Input Matrix

C  Output Matrix;    D  Feed Forward Matrix

x  State Vector;       y  Output Vector

A ≡ ≡

≡ ≡

≡ ≡
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Sobiski-Cardullo State Space Predictor

( ) ( ) ( ) ( )
0

d
dd

t tt

dt t e t e d u t
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τ
−  + = +    ∫

AA
x x B

• Constraints;
• Only applies to LTI systems

• Approximates the future input with the present

• High computation burden due to matrix operations
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Recent Developments in Delay 
Compensation
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Ref. New Predictive Filters for Compensating the 

Transport Delay on a Flight Simulator. AIAA04-5441
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The Adaptive Predictor
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A Practical State Space Compensator
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Results for the State Space Compensator
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Compensated Results
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Power Spectral Density (PSD) - Example
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Compensators td=0.1 s td=0.2 s

McFarland filter 0.5973 12.051

Adaptive predictor 0.5819 7.3387

State space predictor 0.0649 1.9497

Man-Machine Systems Laboratory

State University of New York  at Binghamton

Error Measures for the Three 
Compensators
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PSD Change in Certain Intervals

• 95% of PSD distributes in [0 1] 

Hz

• Delay & compensation affect 

some certain intervals narrower 

than [0 1] Hz

• Delay moves the highest PSD 

peak to higher frequencies, but 

compensation moves it back to 

lower frequencies.
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Touchdown Error
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• MF shows decreased TDE 

only for 192 ms delay in both 

approaches

• AP: all except for 48 ms 

delay SA & 0 ms delay OA

• SS: all except for 48 & 192 

ms delay SA, 0 ms OA

• Both AP and SS are better 

than MF

• MFR shows inconsistent 

difference from the MF
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Handling Qualities (CHR)
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• CHR on GS& TD are close 

to each other

• MF shows decreased CHR 

for all except for 48 ms SA, 

96 & 192 ms OA 

• AP: only for 192 ms for both 

approaches

• SS: all except for 48 & 192 

ms delay OA

• MF is better than AP, but 

worse than SS. However, 

Only MF showed full CHR

• MFR shows inconsistent 

difference from the MF
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NASA Task Load Index (TLX)
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McFarland Filter

McFarland Filter, Spike Reduced

Adaptive Filter

State Space Filter

• MF shows decreased TLX for  

96 & 192 ms SA, 0 & 96 ms 

OA 

• AP: for all except 192 ms SA, 

0 & 48 ms OA

• SS: all except for 0 ms SA, 0 

& 96 ms OA

• AP and SS are slightly better 

than MF

• MFR shows slight 

improvement over the MF
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Integrated PSD of Control Sticks

• MF shows decreased IPSD of 

roll stick for all except 0 & 48 

ms SA, 48 ms OA 

• AP: for all except 0 & 96 ms 

SA, 48 ms OA

• SS: all except for 0 ms SA

• AP & SS are better than MF, 

more significant decrease cases 

in IPSD of RS

• MFR shows inconsistent 

difference from the MF

• Results of PS IPSD is similar 

to the RS IPSD

1 2 3 4
0

0.02

0.04

0.06

Mean & STD of Integrated Roll Stick PSD  for Group #4 (Pilot 11,12,13): Straight-in

P
S

D

1 2 3 4
0

0.1

0.2

0.3
Offset Approach

Added Delay   (1: 0 ms;  2: 48 ms;  3: 96 ms;  4: 192 ms)

P
S

D

No compensation                

McFarland Filter               

McFarland Filter, Spike Reduced

Adaptive Filter                

State Space Filter             

71



Delay Compensation
Summary & Conclusions

• The Practical State Space Predictor gives the 

best results

• The adaptive filter is more robust than the 

McFarland

• References;
• A comprehensive study of three delay compensation algorithms for flight 

simulators” ” (with Liwen Guo, Jake Houck, Lon Kelly And Tom 
Wolters). AIAA paper no.AIAA 2005-5896,  August, 2005

• “New predictive filters for compensating the transport delay on a flight 
simulator” (with Liwen Guo, Jake Houck, Lon Kelly And Tom Wolters). 
AIAA Paper No. AIAA 04-5551, August 2004.

• NASA/CR-2007-215095 & NASA/CR-2007 -2150956
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Simulator Sickness

Man-Machine Systems Laboratory
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Simulator Sickness
Man-Machine Systems Laboratory

State University of New York  at Binghamton

Sickness in simulator, but 
not in vehicle
Diverse set of symptoms
Some similar to motion 
sickness
Can occur during or after 
simulator sessions
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What Seems to Induce the Most Sickness?

Types of Simulators

•Driving

•Helicopters

•Fighters

•Military Transports

•Civil Transports

Duration of Exposure

Maneuver Types

•High intensity 
dynamics

•proximity to the 
ground

•Large excursions

•High optical flow

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Simulator Sickness Questionnaire

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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source simulator (Moving / 

Fixed base)

aircraft incidents (%) reference

Navy

2E7 (F) F/A-18 31 Adapted from  

Lilienthal et.al.
2F132 (F) F/A-18 27

2F112 (?) F-14 10

2F110 (M) E-2C 47

2F64C (M) SH-3 60

2F87F (M) P-3C 39

2F117 (M) CH-46 26

2F121 (M) CH-53D 36

2F120 (F) CH-53E 33

H53D 51 Kennedy

2F120 (F) CH-53E 62 Lilienthal&Merkle

2E6 (F) fighter 27
66 reported aftereffects

McGuiness et. al.

Army 2B33 (M) AH-1 40 Gower

Coast Guard HH-3F

47

Ungs

HH-52

HH-65A

HU-25

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Percentage Reporting Simulator Sickness 
Symptoms

Army Navy

Simulator: 2B33 2B38 2B40 2B42 2F64C 2F117 2F121 C H53E

Aircraft: AH-1 UH-60 AH-64 TH-57C SH3S CH46E CH53D 2F120

Asthenopia

  Eyestrain 37 35 24 27 37 26 21 23

  Difficulty focus 9 19 6 7 24 6 6 10

  Headache 14 22 14 7 31 12 9 17

Motion sickness

  Nausea 13 11 6 5 15 9 8 11

  Dizzy, eyes open 2 3 1 4 9 3 1 6

  Stomach
awareness

10 16 5 1 14 7 2 4

  Vertigo 1 3 1 3 10 3 1 4

Observations: 85 95 434 111 223 281 159 230

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Authors Barret & Nelson (1965) Barret & Nelson (1966) Barret & Nelson (1968)

Simulator Designation Goodyear Aerospace I Goodyear Aerospace II Goodyear Aerospace I & 

II

% Incidence Sickness 64 72

% Leaving Simulator 44 56 50

SYMPTOMS

Queasiness

Sweating X X

Nausea X X

Emesis X

Eyestrain X

Headache X

Pallor

Respiration Changes

Skin Resistance Changes

Heart Rate Changes

Fatigue/Drowsiness

Disorientation X

Visual Dysfunction

Ataxia

Dizziness X X

Vertigo
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Iowa Driving Simulator
Females Males

Novice Experienced Novice Experienced

Finished   Quit

83%    17%

100%   0%

Finished      Quit

33%    67%

50%    50%

Finished      Quit

100%   0%

100%   0%

Finished      Quit

100%   0%

100%   0%

92%     8% 42%    58% 100%    0% 100%    0%

Finished   Quit

100%   0%

100%   0%

Finished   Quit

67%    33%

83%    17%

Finished   Quit

100%   0%

100%   0%

Finished   Quit

83%    17%

100%   0%

100%    0% 75%     25% 100%    0% 92%     8%

With 

motion

1900 FOV

600 FOV

Without 

motion

1900 FOV

600 FOV
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Iowa Driving Simulator (IDS)

SSQ Subscale Scores (mean values)

Females Males Experienced Novice

Nausea 35.97 21.86 47.70 10.34

Oculomotor 31.27 18.00 34.43 14.84

Disorientation 51.33 31.01 63.80 18.56

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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SIMULATOR SICKNESS SUBSCALES

SIMULATOR SICKNESS
HIGH

SICKNESS SEVERITY

LOW

NAUSEA VISUOMOTOR DISORIENTATION

SEA SICKNESSHIGH

SICKNESS SEVERITY

LOW

NAUSEA VISUOMOTOR DISORIENTATION

Man-Machine Systems Laboratory

State University of New York  at Binghamton
82



Presumed Cause

Flight simulators present the pilot / driver 

with different relationships among visual, 

vestibular, and somatosensory stimuli.

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Sensory Conflict Theory

• These new relationships may produce sensory 

conflict

• Between or within sensory/perceptual modalities

• Between what is expected and what is perceived (E.G. 
Perception of the local vertical).

• Sensory systems respond to this conflict in a 

similar manner to poisoning

• The emphasis is on the sensory aspects of sickness

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Postural Instability Theory

• These new relationships make it 
difficult to maintain stable posture

• Prolonged postural instability leads to 
disruption of behavior and sickness 

• The emphasis is on pilot simulator 
interaction

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Advantages Of Postural Theory

• Immediate “Cause” Of Sickness Can Be 
Quantified

- Postural Instability

• Accounts for Many Conflict Situations 
Which Are Not Provocative

• Suggests New Ways to Reduce Sickness 
- Passive Restraint

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Potential Compromise Of Simulator 
Effectiveness

• Training

• Retarded Learning Rates

• Inappropriate Responses To Minimize Conflict

• Decreased Usage And Confidence

• Altered Behavior

• Ground Safety

• Exiting Simulator

• Driving

• Flight Safety

• No Direct Evidence

• Theory And Anecdotal Reports Suggest a Link

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Measuring Simulator Sickness

• Performance. Does performance change with SS 
symptoms onset.

• Workload. Will workload increase with SS 
symptoms onset. 

• Simulator Sickness Questionnaire (SSQ). A set of 
27 symptoms and a four-point Likert scale (none, 
slight, moderate, and severe).

• Model operator behavior using PID methods

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Mitigation Techniques

• Become knowledgeable of symptoms

• Use simulation freeze judiciously

• Use reset judiciously

• Avoid lengthy high intensity sessions

• Turn off visual system during entry or exit

• Avoid lengthy sessions of rapid maneuvering 
especially in close proximity to the ground

• Plan sessions with incrementally more intense 
maneuvers

• Avoid simulator use if subject has symptoms of illness

• Minimize aggressive head movements

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Visual-Vestibular Model for 
Rotational Motion

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Rotational Perception Model 
Responses to Step Inputs

Visual Field Step Input

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Rotational Perception Model Responses to Step Inputs

Modified Cosine Bell Operator

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Evaluation of Human-in-the-
Loop Systems

Man-Machine Systems Laboratory

State University of New York  at Binghamton



Simulation Fidelity Concept
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Evaluation Methods

Subjective Methods

• Questionnaires

• Statistical Analysis

Quasi-quantitative 
Methods

• Cooper-Harper Rating 

• NASA TLX 

• Addition of Secondary 

Task

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Quantitative Metrics
�Mean of error

�Standard deviation of error

�Correlation between control and state

�Total remnant energy

�Center frequency of remnant

�Standard deviation of remnant

�Center frequency of control

�Standard deviation of control

�Center frequency of error

�Standard deviation of error

�Physiological measures
�Eye movements

�Heart rate

�Etc.

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Advantages and Disadvantages

• Subjective: 

•Provides insight but lacks specificity

• Performance Measurement:

•Quantitative, but results may be ambiguous because 
of expertise.

• Workload:

•Quantitative or quasi-quantitative, but sensitivity of 
the metric may be an issue. 

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Evaluation Conclusions

• Behavior measurements are the most useful 

metrics.

• Quantitative metrics are preferred.

• Workload is a key indicator of behavior and is  

preferred.

• Many techniques are available for these 

analyses.

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Integration Standards

•Commercial airline simulator qualification

– 14CFR Part 60 App. A thru D (FAA)

– ICAO 

– JAR FSTDA – Aeroplanes (Joint Aviation Reqirements)

– JAR FSTDH - Helicopters

•Military standards vary but some use FAA

•AGARD Simulator testing

– AR144 Motion

– AR 159 Visual

– CP408  Helicopter Visual and Motion

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Minimizing Integration Errors

•No cookbooks or designers handbook available

•Thorough system design is necessary

– Simulation Objectives

– Task Analysis

– Behavioral Objectives

– Salient Cues Identification

– Cue Implementation

•Engineering Data Compendium (Boff and
Lincoln, 1988) Is a Key Resource

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Conclusions

•Integration errors lead to problems such as

–Poor operator performance & behavior

–Simulator sickness

–Reduced simulator effectiveness

–Etc.

•Many integration errors may be remedied

–By proper design practices

–By compensation/mitigation techniques

Man-Machine Systems Laboratory

State University of New York  at Binghamton
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Finito

Thanks for your attendance

Man-Machine Systems Laboratory

State University of New York  at Binghamton


