Flight and Ground Vehicle
Simulation Course

Distributed Simulation/ High Level Architecture Overview:
Engineering Principles of
Combat Modeling and Distributed Simulation

Dr. Andreas Tolk

andreas.tolk@gmail.com

This handout has been compiled exclusively for the participants in the Flight and Ground Vehicle
Simulation Course. The attached papers are copyrighted material.

Chapter 12

Interoperability and Composability

Andreas Tolk

Theoretical Underpinnings

and Practical Domains

JOHN A. SOKOLOWSKI « CATHERINE M. BANKS

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains
John A. Sokolowski, Catherine M. Banks
ISBN: 978-0-470-48674-0

Hardcover
456 pages
April 2010

Extracted from Tolk A: “Interoperability and Composability,” in Sokolowski JA, Banks CM: Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical Domain, pp.403-433
© John Wiley 2010

The following pages are extractions from the chapter 12 on “Interoperability and
Composability” by Andreas Tolk, prepared for the John Wiley book “Modeling and
Simulation Fundamentals: Theoretical Underpinnings and Practical Domains, ” edited
by John A. Sokolowski and Catherine M. Banks.

Introduction

For many modeling and simulation (M&S) developers, questions regarding the future interoperability
and composability of their solution are not the main concern during design and development. They design
their M&S system or application to solve a special problem and provide a solution. There is nothing wrong
with this perception. However, there are many reasons why it is preferable to design interoperability and
composability from the early phases on, e.g., by using open standards for the communication of
information or by using standardized interfaces to common services. The main driving factor for this is the
wish to enable the reuse of existing solutions. Why should we invest something into rewriting a solution
that already exists?

The second aspect is that of modularity, in particular when dealing with complex systems. While it
may be possible to use and evaluate small models as a whole, large and complex system rapidly become
too big to be handled in one block. Development and testing for such systems should be conducted in
modules; however, these modules need to be interoperable and composable to allow bringing them back
into a common system.

The aspect of reducing costs is also playing a significant role. The idea is to reduce development cost
by reducing reliable solutions and avoiding to “reinvent the wheel” in new models. However, again this
assumes that the components can be identified, selected, composed, and orchestrated.

In addition, the growing connectivity of real world problems is reflected in the requirement to compose
cross-domain solutions as well. Examples are, among others, the evaluation of interdependencies between
the transportation systems and possible energy support in the domain of homeland security, or the analysis
and support of common operations of several nations with several branches of their armed forces hand in
hand with non-military and often even non-government organizations for the organizations like the North
Atlantic Treaty Organization (NATO) or the European Defense Agency (EDA). Other examples from
medical simulation can easily be derived for biological and medical simulations, where similar problems
are observed when composing models on the enzyme, cell, or organism level with each other. The common
challenge of these compositions is that such joint operations are more than just the parallel execution of
part solutions. Synergistic effects need to be taken into consideration, as the whole new operation is likely
to be more than just the sum of its part solution.

The growing connectivity requiring interoperable and composable parts is also reflected in the ideas of
service-oriented architectures (SOA) and system of systems. In both cases solutions are composed on-the-
fly reusing preexisting services that provide the required functionality. While traditionally engineers
conduct the evaluation and adaptation of existing solutions to make them fit for a new environment, these
engineering tasks need now to be conducted by machines, such as intelligent agents. This requires that all
information needed to allow for

o the identification of applicable services,

o the selection of the best subset for the given task,

e the composition of these services to produce the solution and

e the orchestration of their execution

must be provided in machine-readable form as annotations. Consequently, services and systems must
be annotated with information on their interoperability and composability characteristics to allow and
enable their composition on-the-fly.

Finally, interoperability and composability challenges are not limited to M&S applications and
services. Many M&S application areas as defined earlier in this book require the interoperation of M&S
systems and operational infrastructure, such as traffic information systems and evacuation models, or
military command and control systems and combat simulation systems.

Extracted from Tolk A: “Interoperability and Composability,” in Sokolowski JA, Banks CM: Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical Domain, pp.403-433
© John Wiley 2010

This chapter will focus on the technical challenges of interoperability and composability, current
proposed standardized solutions, and ongoing related research. It will not deal with business models
supporting the idea. It will also leave out security aspects (you don’t want your opponent or completion to
use your best tools for his solutions) and questions of intellectual property out. These are valuable research
fields on there own.

Students and scholars of the topics of interoperability and composability are highly encouraged to use
this chapter as a first step towards underlying ideas and methods. It has implications for nearly all domains
captured in this book, in particular for distributed simulation development and validation, verification, and
accreditation (VV&A). However, it also implies new views on conceptual modeling beyond establish needs
as well as the need for extended annotations of M&S services in service-oriented architectures. It also
implies the need for new M&S standards as current solution are to implementation focused. We will focus
on these issues in the appropriate paragraphs of this chapter.

Defining Interoperability and Composability

It is good practice to start discussions on the need for unambiguous definitions with respective
definitions of terms that are used. We will start with the more traditional definitions used by IEEE and
other organizations before looking at ongoing research on layered models of interoperations that are
applied to improve the community understanding of what interoperability and composability are and how
they can be reached.

Selected Interoperability Definitions

IEEE defines interoperability as the ability of two or more systems or components to exchange
information and to use the information that has been exchanged [1]. This simple definition has already a
number of implications:

e Interoperability is defined between two or more systems. As such, it includes peer-to-peer

solutions as well as hub solutions.

e Interoperability allows systems to exchange information. This means that systems must be able to
produce the required information as well as to consume the provided information. In particular
when information is encapsulated, this may be challenging, which explains that it is necessary to
take interoperability requirements into account early enough, so that the design does not hide
information from accessibility.

o Interoperability allows systems to use the information in the receiving system. This implies some
common understanding that is shared between sender and receiver. If a system “just listens” to
provided information but ignores everything it cannot use, this is not an interoperable solution.

Other organizations, like the Software Engineering Institute (SEI) of Carnegie Mellon, are stricter in
their definition. In [2], SEI defines interoperability as the capability of two or more components or
component implementations to interact. The notion of taking action based on the received information is
the new element in this view.

The U.S. Department of Defense adds the component of efficiency to the collaboration and defines
interoperability as the ability of systems, units, or forces to provide data, information, materiel, and
services to and accept the same from other systems, units, or forces, and to use the data, information,
materiel, and services so exchanged to enable them to operate effectively together [3]. The same directive
furthermore states that joint concepts and integrated architectures shall be used to characterize the
interoperations of interest.

In summary, interoperability is understood as the ability of systems to effectively collaborating
together on the implementation level to reach a general common objective. To this end, they exchange
information that both sides understand well enough to make use of it in the receiving system.
Interoperability is a characteristic of a group of systems.

Extracted from Tolk A: “Interoperability and Composability,” in Sokolowski JA, Banks CM: Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical Domain, pp.403-433
© John Wiley 2010

Selected Composability Definitions

In the M&S community, the term composability is also used to address similar issues. Petty and Weisel
documented various definitions in [4]. Examples for definitions of composability are the following.

Harkrider and Lunceford define composability as the ability to create, configure, initialize, test, and
validate an exercise by logically assembling a unique simulation execution from a pool of reusable system
components in order to meet a specific set of objectives [5]. They introduce the aspect of logically
assembling and — as such — emphasize the necessary for a common basis for the conceptual models that
describe the underlying logic.

Pratt, Ragusa, and von der Lippe approach the challenge of composability from the common
architecture perspective. They define it as the ability to build new things from existing pieces [6]. These
existing pieces, however, are components of a common architecture, or at least can be captured in a
common architecture framework.

Kasputis and Ng emphasize the simulation view. They define composability as the ability to compose
models/modules across a variety of application domains, levels of resolution and time scales [7].

In their work, Petty and Weisel recommend the following definition: Composability is the capability to
select and assemble simulation components in various combinations into valid simulation systems to satisfy
specific user requirements [4]. They also observe that composability deals with the composition of M&S
applications using components that exist in the community (e.g., in a common repository). The composition
is driven by requirements defining the intended use of the desired composition. Their definition became a
common basis of composability research within the community. Composability therefore resides in the
models, dealing with the conceptualizations and how they can support a set of requirements.

In comparison, interoperability is seen as the broader, technical principle of interacting systems based
on information exchange while composability deals with the selection and composition of preexisting
domain solutions to fulfill user requirements. This idea to distinguish between interoperability of
implementation or simulation systems and composability of conceptualizations or simulation models is also
the result of current layered approaches.

Towards a Layered Model of Interoperation

Several researchers introduced layered models to better understand the theoretical underpinnings of
interoperation, not only in M&S. Computer science has a tradition of using layered models to better
understand the concepts underlying successful interoperation on the implementation level. One of the better
known examples is the International Organization for Standards (ISO)/Open System Interconnect (OSI)
reference model that introduced seven layers of interconnection, each with well defined protocols and
responsibilities [8]. This section uses the idea of introducing a reference model with well defined layers of
interoperation to better deal with challenges of interoperability of simulation systems and composability of
simulation models.

Dahmann introduced the idea of distinguishing between substantive and technical interoperability [9].
In her presentation, technical interoperability ensures connectivity and distributed computation while
substantive interoperability ensures the effective collaboration of the simulation systems contributing to the
common goal.

Petty built on this idea in his lectures and short courses [10]. He explicitly distinguishes between the
implemented model representing substantive interoperability and layers for protocols, the communication
layers, and hardware representing technical interoperability.

Tolk and Muguira [11] introduced the first version of a layered model for substantive interoperability,
which was very data centric. In this first model, they distinguished between system specific data,
documented data, aligned static data, aligned dynamic data, and harmonized data. These categories describe
gradual improvements of interoperability and composition. While system specific data result in
independent systems with proprietary interfaces, documented data allow for ad-hoc peer-to-peer
federations. If these data follow a common model, they are statically aligned and allow for easier
collaboration. If their use in the systems is also understood, the data are dynamically aligned as well, and
systems can be integrated. Finally, when assumptions and constraints regarding the data and their use are
captured as well, the data are harmonized, allowing a unified view.

Extracted from Tolk A: “Interoperability and Composability,” in Sokolowski JA, Banks CM: Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical Domain, pp.403-433
© John Wiley 2010

Using the responding articles of Hoffmann [12] and Page, Briggs, and Tufarolo [13], the LCIM was
improved into its current form, which was successfully applied in various application domains, which are
not limited to M&S applications, as reported in [14]. The main improvement was to adapt the names of the
layers of interoperation to the terms known from the computer linguistic spectrum regarding the increasing
level of understanding based on the information exchanged [12]. In addition, Page, Briggs, and Tufarolo
proposed to clearly distinguish between the three governing concepts of interoperation:

e Integratability contends with the physical/technical realms of connections between systems, which

include hardware and firmware, protocols, networks, etc.

e Interoperability contends with the software and implementation details of interoperations; this
includes exchange of data elements via interfaces, the use of middleware, mapping to common
information exchange models, etc.

e Composability contends with the alignment of issues on the modeling level. The underlying
models are purposeful abstractions of reality used for the conceptualization being implemented by
the resulting systems.

In summary, successful interoperation of solutions requires integratability of infrastructures,

interoperability of systems, and composability of models. Successful standards for interoperable solutions
must address all three categories.

The Levels of Conceptual Interoperability Model

The current version of the LCIM was first published in [15]. In this and the following papers, the
LCIM exposes six layers of interoperation, namely:

e The technical layer deals with infrastructure and network challenges, enabling systems to

exchange carriers of information. This is the domain of integratability.

e The syntactic layer deals with challenges to interpret and structure the information to form
symbols within protocols. This layer belongs to the domain of interoperability.

e The semantic layer provides a common understanding of the information exchange. On this level,
the pieces of information that can be composed to objects, messages, and other higher structures
are identified. It represents the aligned static data.

e The pragmatic layer recognizes the patterns in which data are organized for the information
exchange, which are in particular the inputs and outputs of procedures and methods to be called.
This is the context in which data are exchanged as applicable information. These groups are often
referred to as (business) objects. It represents the aligned dynamic data.

e The dynamic layer recognizes various system states, including the possibility for agile and
adaptive systems. The same business object exchanged with different systems can trigger very
different state changes. It is also possible that the same information sent to the same system at
different times can trigger different responses.

e Finally, assumptions, constraints, and simplifications need to be captured. This happens in the
conceptual layer. This layer represents the harmonized data.

The following figure shows the LCIM in connection with the three interoperation categories as defined
in [13]. The figure adds an additional basis level 0 in which no interoperation takes place and where no
interoperability has been established.

The LCIM is unique regarding the dynamic and conceptual level. The viewpoint of the LCIM is to
distinguish clearly between the three interoperation categories — integratability, interoperability,
composability — and their related concepts within infrastructures, simulations, and models of the systems or
services.

Extracted from Tolk A: “Interoperability and Composability,” in Sokolowski JA, Banks CM: Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical Domain, pp.403-433

© John Wiley 2010

‘&6\\\6 Level 6
Qog Conceptual Interoperability —
o =1
®° o
Level 5]
Modeling / Dynamic Interoperability 8.
Conceptualization 2
Level 4 o
‘\\“ Pragmatic Interoperability 2
Q““)
\d° Level 3 =
A\ Semantic Interoperability <
Simulation / g
Implementation . Level 2 - =
Syntactic Interoperability 5
:
Level 1 2
% Technical Interoperability o
® =
Level 0 =}

Network / No Interoperability

Infrastructure

Figure 12-1: Levels of Conceptual Interoperability Model

Alternative Layered Views

Although the LCIM has been successfully applied in various domains [14], alternative layered models
exist that are of interest and at a similar maturity level. Of particular interest is the following model that
finds application in the net-centric environment.

Zeigler, Kim, and Praehofer [15] propose the following architecture for M&S that also comprises six
layers. They define these layers as follows:

e The Network Layer contains the infrastructure including computer and network.

e The Execution Layer comprises the software used to implement the simulation. This includes

protocols, databases, etc.

e The Modeling Layer captures the formalism for the model behavior.

e The Design and Search Layer supports the design of systems based on architectural constraints,

comparable to the ideas captured in [6] and mentioned earlier in this chapter.

e The Decision Layer applies the capability to search, select, and execute large model sets in support

of what-if analyses.

e The Collaboration Layer allows experts — or intelligent agents in support of experts — to introduce

viewpoints and individual perspectives to achieve the overall goal.

The LCIM maps well to the network, execution, and modeling layer that deal with infrastructure,
simulation, and model. The upper three layers are meta-layers that capture the intended and current use of
the model, including architectural constraints, which are not dealt with by the LCIM. Using this
architecture for M&S, Zeigler and Hammonds define syntax, semantics, and pragmatics as linguistic levels
in a slight different way. They define in [16]:

e Syntax focuses on structure and adherence to the rules that govern that structure, such as XML

e Semantics consists of low-level and high-level parts. Low-level semantics focus on definition of

attributes and terms, high-level semantics on the combined meaning of multiple terms.

e Pragmatics deals with the use of data in relation to its structure and the context of the application

(why is the system applied).

These definitions are different from the similar terms introduced in the LCIM. In particular the
pragmatics as defined by Zeigler and Hammonds represent the context of the application; in the LCIM,
pragmatics is the context of data exchange within the application.

Extracted from Tolk A: “Interoperability and Composability,” in Sokolowski JA, Banks CM: Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical Domain, pp.403-433
© John Wiley 2010

Zeigler and Hammonds associate these linguistic levels with the architecture for M&S in [16] as
shown in the following figure. The difference in the definition of pragmatics becomes obvious, as the
intended use capture in the linguistic definition of the term is mapped to the meta-layers of the architecture
for M&S.

Collaboration Layer

Decision Layer Pragmatic Level

Design and Search Layer

Modeling Layer Semantic Level

Execution Layer

Syntactic Level
Network Layer

Figure 12-2: Association between Architecture for M&S and Linguistic Levels

Both viewpoints are valid and offer a different perspective of the challenges of interoperability and
composability. While the LCIM is unique in defining the dynamic and the agility of systems in the dynamic
layer as well as the assumption, constraints, and simplifications in the conceptual layer, the approach of
Zeigler and Hammond introduces the intended and current use in for of linguistic pragmatics as an
additional challenge.

Summarizing Observations on Standardization Efforts and Alternatives

DIS and HLA are well established IEEE standards that have been successfully applied in world wide
distributed simulation experimentation. BOM is a SISO standard that introduces the idea of conceptual
models of representing entities, events, and patterns of interplay in support of reusability and
composability.

XML, RDF/RDFS, and OWL/OWLS provide means that can be applied in support of interoperability
and composability of M&S applications. In particular when M&S applications need to interoperate with
operational systems that do not follow M&S interoperability standards, this knowledge becomes important.

There are other possibilities that may be considered for special application domains, among these the
Test and Training Enabling Architecture (TENA) [25]. TENA is not a standard as those described here but
an integrated approach to develop distributed simulation for military testing and training, including the
integration of live system on test ranges. TENA supports the integration of HLA and DIS based systems,
but is neither HLA nor DIS based. Following the TENA philosophy, interoperability requires a common
architecture, which is TENA, an ability to meaningfully communicate, which requires a common language
provided by the TENA Object Model and a common communication mechanism, which is the TENA
Middleware and Logical Range Data Archive. In addition, a common context in form of a common
understanding of the environment, a common understanding of time as provided by TENA Middleware,
and a common technical process as provided by TENA processes is needed. The specialization of test and
training in the military domain is the strength as well as the weakness of TENA, as test and training is well

Extracted from Tolk A: “Interoperability and Composability,” in Sokolowski JA, Banks CM: Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical Domain, pp.403-433
© John Wiley 2010

supported, but the transition to other domains requires significant changes to the object model, the data
archives, and even the middleware.

Another branch not evaluated in this chapter but worth to be considered is the use of the Discrete Event
System Specification (DEVS) as documented in [15]. DEVS is a formalism rooted in systems theory. Using
this formalism consistently improves reuse and composability, but goes beyond the scope of this chapter.

Summary

This chapter introduced the student and scholar to the concepts needed to understand the challenges of
integratability, interoperability, and composability. It motivated why it is necessary to distinguish between
interoperability of simulation systems focusing on aspects of their implementation and composability of
simulation models focusing on aspects of their conceptualization. The LCIM was introduced to
systematically evaluate in prescriptive and descriptive applications the various layers of interoperation. The
LCIM also identifies artifacts needed to annotate systems and service allowing identifying applicable
potential solutions, selecting the best candidates, composing the selected candidates to provide the solution,
and orchestrating their execution.

Following these theoretic concepts, current interoperability standardization efforts were introduced:
IEEE 1278 DIS [17], IEEE 1516 HLA [18], and SISO-STD-003-2006 BOM [19]. In addition to these M&S
specific standards, web-based standards were described as well: XML, RDF/RDFS, and OWL/OWL-S.
When applying the LCIM descriptively the elusiveness of the conceptual level becomes apparent.

Current research evaluates engineering methods in support of enabling interoperation in complex
systems: data, process, and constraint engineering. This is ongoing research that contributes to the next
generation of interoperability standards.

Although this chapter focuses on the technical challenges of interoperability and composability,
technical solutions do only support interoperability as a point-solution in time. To ensure interoperability
and composability over the life time of a system or a federation, management processes are needed that are
integrated into project management as well as into strategic project management [31]. What management
processes are needed and which artifacts need to be produced to support them are topics of ongoing
research.

References

[1] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. |IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York, NY; 1990.

[2] SOFTWARE ENGINEERING INSTITUTE. SEI Open Systems Glossary. Carnegie Mellon, Pittsburgh, PE.
Available at http://www.sei.cmu.edu/opensystems/glossary.html. Accessed 2009 May 15.

[3] U.S.DEPARTMENT OF DEFENSE (DoD) Directive 5000.01. The Defense Acquisition System.
Certified as current as of November 20, 2007 (former DoDD 5000.1, October 23, 2004).

[4] PeTTY MD, Weisel EW. A Composability Lexicon. In Proceedings of the Spring Simulation
Interoperability Workshop, March 30 - April 4, 2003, Orlando, FL; pp. 181-187.

[5] HARKRIDER SM, LUNCEFORD WH. Modeling and Simulation Composability. In Proceedings of the
Interservice/Industry Training, Simulation and Education Conference, 29 November - 2 December
1999, Orlando FL.

[6] PRATT DR, RAGUSA LC, VON DER LIPPE S. Composability as an Architecture Driver. In Proceedings
of the Interservice/Industry Training, Simulation and Education Conference, 29 November - 2
December 1999, Orlando FL.

[71 KaspuTis S, NG HC. Composable simulations. In Proceedings of the Winter Simulation Conference,
December 10-13, 2000, Orlando FL; pp. 1577-1584.

[8] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)/INTERNATIONAL ELECTROTECHNICAL
ComMmissioN (IEC) 10731:1994. Information technology — Open Systems Interconnection — Basic
Reference Model — Conventions for the definition of OSI services. SO Press, 1994.

[91 DAHMANN JS. High Level Architecture Interoperability Challenges. Presentation at the NATO
Modeling & Simulation Conference, 25-29 October 1999, Norfolk VA. NATO RTA Publications.

http://www.sei.cmu.edu/opensystems/glossary.html

Extracted from Tolk A: “Interoperability and Composability,” in Sokolowski JA, Banks CM: Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical Domain, pp.403-433
© John Wiley 2010

[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]

[19]

[25]

[31]

PETTY MD. Interoperability and Composability. Modeling & Simulation Curriculum of Old
Dominion University, Old Dominion University, Norfolk, VA; 2002.

ToLK A, MUGUIRA JA. The Levels of Conceptual Interoperability Model (LCIM). In Proceedings of
the Simulation Interoperability Workshop, 14-19 September 2003, Orlando, FL.

HOFMANN M. Challenges of Model Interoperation in Military Simulations. SIMULATION
2004;80:659-667.

PAGE EH, BRIGGS R, TUFAROLO JA. Toward a Family of Maturity Models for the Simulation
Interconnection Problem. In Proceedings of the Simulation Interoperability Workshop, 18-23 April
2004, Arlington, VA.

ToLK A, TURNITSA CD, DiaLLO SY. Implied Ontological Representation within the Levels of
Conceptual Interoperability Model. International Journal of Intelligent Decision Technologies
2008;2(1): 3-19.

ZEIGLER BP, KiM TG, PRAEHOFER H. Theory of Modeling and Simulation, 2" ed. New York:
Academic Press, 2000.

ZEIGLER BP, HAMMONDS PE. Model and Simulation-based Data Engineering. Elsevier Science &
Technology Books, New York: Academic Press, 2007.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. |IEEE 1278 Standard for Distributed
Interactive Simulation, IEEE publication, Washington, DC.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. IEEE 1516 Standard for Modeling and
Simulation High Level Architecture, IEEE publication, Washington, DC.

SIMULATION INTEROPERABILITY STANDARDS ORGANIZATIONS. SISO-STD-003-2006 Base Object
Model (BOM) Template Specification;SISO-STD-003.1-2006 Guide for BOM Use and
Implementation. Available at http://www.sisostds.org. Accessed 2009 May 15.

NOSEWORTHY JR. The Test and Training Enabling Architecture (TENA) Supporting the
Decentralized Development of Distributed Applications and LVVC Simulations. In Proceedings of the
12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications,
27 — 29 October 2008, Vancouver, Canada; pp. 259-268, 2008.

ToOLK A, LANDAETA RE, KEWLEY RH, AND LITWIN TT. Utilizing Strategic Project Management
Processes and the NATO Code of Best Practice to Improve Management of Experimentation Events.
In Proceedings of the International Command and Control Research and Technology Symposium,
15-17 June 2009, Washington, DC, USA.

http://www.sisostds.org/

Chapter 12

Standards for Distributed Simulation

Andreas Tolk

Engineering Principles of Combat Modeling and Distributed Simulation
Andreas Tolk
ISBN: 978-0-470-87429-5

Hardcover
936 pages
March 2012

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

The following pages are extractions from the chapter 12 on “Standards for Distributed
Simulation” by Andreas Tolk, prepared for the John Wiley book “Engineering Principles
of Combat Modeling and Distributed Simulation, ” edited by Andreas Tolk.

What are Standards for Distributed Simulation?

As described in the last chapter on the challenges of distributed simulation, the tasks to be conducted
by the simulation engineering are all driven by the problem of the customer. Every standard that helps

e to capture the objectives of an exercise or another simulation task,

o to derive a conceptual model that can serve as a blue print to guide the simulation engineer

through further decisions,

e to identify potential simulation solutions based on the available documentation,

e to select the best simulation solutions to implement a specific solution for the problem of the

customer,

e to compose the solutions into a new system — or a federation — which includes the identification of

multiresolution and time challenges,

e to integrate networks and infrastructures (including using proxies, brokers and protocol solutions),

o to make the simulation systems interoperable (including using gateways) and identify or develop

an information exchange model,

e to ensure that the models are composable,

e to ensure that data needed for initialization are available or can be obtained,

e and all other tasks and subtasks described so far in this book ...

... every standard is relevant for distributed simulation. As such, all standards that support distributed
systems and computer engineering are relevant. Network standards and standards supporting the Internet
are potential candidates.

To give an example, the Extensible Modeling and Simulation Framework (XMSF) initiative kicked off
by George Mason University in Fairfax, VA, Naval Postgraduate School in Monterey, CA, Old Dominion
University in Norfolk, VA, and the Science Applications International Corporation (SAIC) in San Diego,
CA, looked at applying World Wide Web standards in support of Internet based distributed simulation of
the future (Brutzman et al., 2002; Blais et al., 2005). A recently conducted peer study showed standards of
the semantic web can support distributed simulation better and are expected to be applied more
(Strassburger et al., 2008), and recent research shows that this indeed may be the case.

In this chapter, the focus will be on two topics, namely (1) standards officially recognized as modeling
and simulation standards and (2) standards that are repeatedly successfully applied in support of distributed
simulation in numerous modeling and simulation conferences. Both choices can neither be complete nor
exclusive, but they are a compilation that should provide a good starting point for simulation engineers
looking for support of their tasks.

Modeling and Simulation Standards

The viewpoint taken in this book to identify modeling and simulation standards is driven by purely
practical views: to start looking at modeling and simulation standards, the standards supported by the
Simulation Interoperability Standards Organization (SISO) build the initial group.

The reason is simple. SISO states in its vision that it will serve the global community of modeling and
simulation professionals, providing an open forum for the collegial exchange of ideas, the examination and
advancement of M&S-related technologies and practices, and the development of standards and other
products that enable greater M&S capability, interoperability, credibility, reuse, and cost-effectiveness
(SISO, 2010). Furthermore, the Institute of Electrical and Electronics Engineers (IEEE) Computer Society
Standards Activities Board voted in November 2003 to unanimously grant the SISO Standards Activities
Committee (SAC) status as a recognized IEEE Sponsor Committee. The SISO SAC Chair serves as SISO's
primary contact for all IEEE Standards activities. In addition, SISO maintains a Liaison Member
relationship with Sub-Committee 24 (SC 24) of the Joint Technical Committee 1 (JTC 1) of the

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC).
Starting with the standards recognized by SISO as modeling and simulation standards is therefore easily

justifiable.

On their website, SISO enumerates IEEE standards, SISO standards, and 1SO standards supporting
modeling and simulation, which will be covered at least in form of an overview here as well. As of June
2011, the following standards were enumerated. As SISO meets at least two times per year in the USA and
one time in Europe, this is a list that is constantly updated. The reader is therefore encouraged to check for
updates regularly to ensure that support from the latest developments.

e |EEE Standards

o High Level Architecture (will be dealt in more detail in this chapter as well as in Chapter

19)

IEEE Standard 1516 - Framework and Rules

IEEE Standard 1516.1 - Federate Interface Specification

IEEE Standard 1516.2 - Object Model Template (OMT) Specification

IEEE Standard 1516.3 - Federation Development and Execution Process
(FEDEP) Recommended Practice

IEEE Standard 1516.4 - Recommended Practice for Verification, Validation,
and Accreditation of a Federation—An Overlay to the High Level Architecture
Federation Development and Execution Process

o Distributed Interactive Simulation (will be dealt in more detail in this chapter)

IEEE 1278.1 - IEEE Standard for Distributed Interactive Simulation -
Application Protocols

IEEE 1278.1A - IEEE Standard for Distributed Interactive Simulation -
Supplement to Application Protocols - Enumeration and Bit-encoded Values
IEEE 1278.2 - IEEE Standard for Distributed Interactive Simulation -
Communication Services and Profiles

IEEE 1278.3 - IEEE Standard for Distributed Interactive Simulation Exercise
Management & Feedback (EMF) - Recommended Practice

IEEE 1278.4 - IEEE Standard for Distributed Interactive Simulation -
Verification Validation & Accreditation

e |ISO/IEC Standards
o SEDRIS (see Chapter 6)

e SISO Standards

ISO/IEC 18023-1, SEDRIS -- Part 1: Functional specification

ISO/IEC 18023-2, SEDRIS -- Part 2: Abstract transmittal format
ISO/IEC 18023-3, SEDRIS -- Part 3: Transmittal format binary encoding
ISO/IEC 18024-4, SEDRIS language bindings -- Part 4: C

ISO/IEC 18025, Environmental Data Coding Specification (EDCS)
ISO/IEC 18041-4, EDCS language bindings -- Part 4: C

ISO/IEC 18026, Spatial Reference Model (SRM)

ISO/IEC 18042-4, SRM language bindings -- Part 4: C

o Approved Standards

SISO-STD-001-1999: Guidance, Rationale, & Interoperability Modalities for
the RPR FOM (GRIM 1.0) (will be dealt in more detail in this chapter)
SISO-STD-001.1-1999: Real-time Platform Reference Federation Object Model
(RPR FOM 1.0) (will be dealt in more detail in this chapter)
SISO-STD-002-2006: Standard for: Link16 Simulations (see also Chapter 23)
SISO-STD-003-2006: Base Object Model (BOM) Template Specification (see
also Chapter 19)

SISO-STD-003.1-2006: Guide for BOM Use and Implementation (see also
Chapter 19)

SISO-STD-004-2004: Dynamic Link Compatible HLA API Standard for the
HLA Interface Specification Version 1.3

SISO-STD-004.1-2004: Dynamic Link Compatible HLA API Standard for the
HLA Interface Specification (IEEE 1516.1 Version).

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

= SISO-STD-005-200X: Link 11 A/B (see also chapter 23)
= SISO-STD-006-2010: Commercial Off-the-Shelf (COTS) Simulation Package
Interoperability (CSPI) Reference Models
= SISO-STD-007-2008: Military Scenario Definition Language (MSDL) (see also
Chapter 24)
= SISO-STD-008-2010: Core Manufacturing Simulation Data (CMSD)
o Product Development Groups (PDG), Product Support Groups (PSG), and Standing
Support Groups (SSG)
PDGs are developing a new standard in a community effort. Based on a product
nomination, the group reaches a consensus on the standard and recommends the solution
to the SAC. In order to work on regular updates once the standard is accepted, a PSG or
SSG may be formed. PSG are meeting regularly, SSG only in case of need.
C-BML - Coalition - Battle Management Language
CMSD - Core Manufacturing Simulation Data
CSPI - Commercial Off-the-Shelf Simulation Package Interoperability
DDCA - Distributed Debrief Control Architecture
DIS - Distributed Interactive Simulation Extension
DSEEP - Distributed Simulation Engineering and Execution Process
DMAO - DSEEP Multi-Architecture Overlay
EPLRS/SADL - Enhanced Position Location Reporting System including
Situational Awareness Data Link Simulation Standard
FEAT - Federation Engineering Agreements Template
GM-VV - Generic Methodology for VV&A in the M&S Domain
Link 11 A/B - Link 11 A/B Network Simulation Standard
MSDL - Military Scenario Definition Language
RPR FOM - Real-Time Platform Reference Federation Object Model
SCM - Simulation Conceptual Modeling
SRML - Simulation Reference Markup Language
In addition, SISO also sponsors Study Groups (SG) that are made up of experts in the field from
academia, industry, and government to evaluate the need and applicability for standardized modeling and
simulation solutions for focused topics. These study groups create a final report that often results in the
development of a Product Nomination (PN) for a PDG. The standardization process including definitions of
roles and responsibilities of the PDG and the SAC and all officers is documented in the Balloted Products
Development and Support Process (SISO, 2008).

Other Standards in Support of Distributed Simulation

It is much harder to define other standards successfully applied in support of distributed simulation, as
there is no organization that tracks such developments. Some professional organizations of interest to the
simulation engineers are captured in an appendix to this book, but there is not a central website or point of
contact that can be visited for information. The approach taken here was to evaluate the last five years of
modeling and simulation workshops and identify other standards that were documented as successful in
these proceedings repeatedly by more than one group. The evaluated workshops are
= Winter Simulation Conference (WSC) of the American Statistical Association (ASA), Association
for Computing Machinery (ACM), Institute of Electrical and Electronics Engineers (IEEE),
Institute for Operations Research and the Management Sciences: Simulation Society (INFORMS),
Institute of Industrial Engineers (I1E), National Institute of Standards and Technology (NIST), and
SCS

= Principles of Advanced Distributed Simulation (PADS) of ACM, IEEE, and SCS,

= Spring and Summer Simulation Multi-conferences of the Society for Modeling and Simulation
International (SCS), and

= Spring, Euro, and Fall Simulation Interoperability Workshops (SIW) of SISO

Even with this approach it is likely that this summary only captures a small fraction of standards that
can support distributed simulation. As stated before, every standard that supports distributed systems
supports by definition distributed simulation as well. New programming languages and maybe even

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

simulation languages are developed, web-enabled development tools become more and more important,
and so on. Taking these constraints into account, the application of the following three standard categories
was documented repeatedly in the domain of modeling and simulation related research events:

(1) Using the discrete event system specification (DEVS) and its variants,

(2) Using modeling languages and architecture languages of the application domain, and

(3) Applying web standards, in particular semantic web standards, in support of distributed

simulation.

Many more topics could have made the list, such as data and process modeling issues, but that would
have blown this chapter out of proportion. As it should be self-evident that a simulation engineer has a solid
programming background and knows “the usual” programming language well enough that algorithms can
be read and understood, it is also a natural necessity to continuously observe the domain of distributed
systems and evaluate new ideas regarding their applicability to solve challenges in the domain of
distributed simulation.

Discrete Event System Simulation Formalism

We understand formalism in this book as a description of something in formal mathematical logical
terms so that a machine can read and potentially understand it. Although simulation is not limited to
discrete event simulation — we introduced several alternatives in Chapter 4 — this modeling paradigm is
predominant in current combat models. A formal representation is therefore helpful.

The Discrete Event System Simulation (DEVS) formalism was developed by the research group
around Bernard Zeigler in support of establishing a theory of modeling and simulation. The latest edition
has been published by Zeigler et al. (2000). The formalism builds models from the bottom up.

The formalism can be used for very practical applications, as shown in many examples by Wainer
(2009). The application to combat modeling task is shown in Chapter 21. Atomic and coupled DEVS
together build the classic sequential DEV'S approach. With the advancements in computer technology, there
have also been numerous extensions, also explained with examples in Wainer (2009), such as parallel
DEVS, dynamic DEVS, cellular DEVS, and more.

It is important to distinguish between the DEV'S formalism and DEVS implementations based on this
formalism. Several simulation development frameworks have been proposed based on the DEVS formalism
that are united by the common roots, but that does not mean that they are interoperable. Recently, a DEVS
standardization effort was launched that tries to establish a community of DEVS practice that works on
common standards to support interoperable implementations as well. Examples for several DEVS
implementations as well as resulting interoperability challenges are given by Wainer et al. (2010). Most
implementations use Java, C++, or C# as programming languages. Examples for DEVS implementations
and platforms are

= adevs: A C++ library for constructing discrete event simulations based on the parallel DEVS and

dynamic DEVS

= CD++: An environment for developments based of DEVS and cellular DEVS

= CoSMo-Sim: An integrated developer environment for DEVS and parallel DEVS, also supports

cellular automata and XML based models

= DEVS++: Open Source Library for C++

= DEVS#: Open Source Library for C#

= DEVSJAVA and DEVS Suite: Development environment for JAVA

= DEVSSOA: Service oriented Architectures based on DEVSML (DEVS Modeling Language), and

= DEVSim++: Extension on the basic simulator for DEVS, used in Chapter 21

This list is just a small subset. Many of these environments are open source, in particular those
developed by the academic community. An addition, Mittal (2010) developed the DEVS Unified Process
which connects DEVS to system architecture frameworks.

The DEVS formalism and DEVS implementations have been extensively dealt with in proceedings by
academicians and practitioners in many simulation domains. Many implementations and development
environments are open source and therefore often used. The simulation engineers for combat engineering
should at least know of these developments. In particular when it comes to the need to federate current
combat simulation solutions with new simulation domains needed for new military tasks — such as human,
social, cultural, and behavior models as discussed later in this book — it is more than likely that some of

http://www.ornl.gov/~1qn/adevs/
http://cell-devs.sce.carleton.ca/
http://sourceforge.net/projects/cosmosim/
http://odevspp.sourceforge.net/
http://xsy-csharp.sourceforge.net/DEVSsharp/
http://www.acims.arizona.edu/SOFTWARE/software.shtml
http://smslab.kaist.ac.kr/zbxe/?mid=download&document_srl=6015
http://smslab.kaist.ac.kr/zbxe/?mid=download&document_srl=6015

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

them will follow the DEVS formalism and make use of its development environments and implementation.
A small group is already looking into DEVS/HLA applications and interoperability challenges, but this
research is still in its beginning.

Modeling and Architecture Languages

The more general block of modeling and architecture languages is in particular needed to communicate
models and implementations among different stake holders, such as communications between customers,
potential users of the product, and engineers, but also between simulation engineers active in different
phases of the life cycle of a simulation. We will look at different phases in a following chapter of this book
in more detail. Modeling and architecture languages are used to specify descriptions and documentations of
systems and architectures based on a set of agreed and aligned artifacts, such as tables, diagrams, or figures.
It is highly desirable that these artifacts are based on a common repository containing all described
elements only once to ensure consistency in descriptions.

Examples we want to have a look at in this section of the chapter are the Unified Modeling Language
(UML), the System Modeling Language (SysML), and the U.S. Department of Defense Architecture
Framework (DoDAF). Again, this is only a very limited subset, but it will be used to address the main ideas
the simulation engineer has to known in order to apply comparable solutions to facilitate work. In addition,
such modeling languages have become often the lingua franca between engineers and simply have to
belong to the tool set of a simulation engineer supporting combat modeling.

UML and SysML are closely related. They are both governed by the Object Management Group
(OMG) and build the basis for many community standards. They even overlap significantly, as SysML was
defined as a subset of UML that was extended to better support system modeling while UML was defined
mainly in support of software engineering (although UML was applied for many other approaches as well,
such as business modeling). UML artifacts are also used to describe several DoDAF artifacts. The
descriptions here cannot replace a more detailed introduction or a tutorial, but it should be sufficient to
motivate to more deeply deal with these topics.

UML uses different artifacts and diagrams that can be used to provide different points of views on one
system. The latest official version of UML is 2.3, but in March 2011 the beta version of 2.4 was released.
UML is continuously improved and enriched by a huge variety of users and developers.

The traditional view of systems modeling distinguishes between static views describing the structures
and functional views describing the behavior exposed. These views describe what entities are modeled (as
classes describing the types and objects describing the instances of things), how entities react when they
receive input (as the state changes, which can be broken down in case the entity is a composite made up of
several smaller entities), and how entities interact with each other (in form of activities in which more than
one entity work together and exchange messages with each other).

UML has been applied in a variety of communities and has become something like the lingua franca
between modelers that specify software intensive systems. As such, the simulation engineer needs to be at
least able to read and interpret the artifacts. The main disadvantage of UML, however, is the focus on
object-oriented software systems. While UML easily can be interpreted to support other systems as well,
the software engineering roots often shine through.

These led to the development of SysML, also under the umbrella of the Object Management Group.
SysML is a general modeling language for systems and gets more and more support from systems
engineers. There is a huge overlap between UML and SysML, but the focus is on the system, not on the
software. As such, SysML started by stripping all software specific diagrams from UML, modify the other
in case of need, and adding system specific new diagrams where needed.

The simulation engineer can use SysML specifications not only for the development of federations, but
many weapon systems and combat support systems are documented in SysML. A feature of particular
interest is the traceability of system component functionality to requirements, which can be a significant
help when simulation developers have to decide which details should be included into a model. If, e.g., a
component of a system hosts many of the functionalities driven by high priority requirements it may be
wise to represent this component explicitly to allow for better damage evaluations in the light of original
requirements.

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

The last standard a simulation engineer supporting combat modeling to be explicitly mentioned in this
section is DoDAF. A later chapter will deal with this topic in some more detail, but under a slightly
different viewpoint.

DoDAF is currently published and applied in different versions. The most current version is DoDAF
2.0, but many organizations are still using DoDAF 1.5. We will have a look at both versions to show the
main difference. As all systems used within the US Department of Defense principally should be
documented using the artifacts defined by DoDAF, it is very helpful for the simulation engineer to know
the framework. Additional arguments for the use of DoDAF in the context of Combat Modeling and
Distributed Simulation are compiled by Atkinson (2004).

DoDAF is rooted in earlier systems engineering approaches. The C4ISR Architecture Framework was
created in response to the passage of the Clinger-Cohen Act and addressed in the 1995 Deputy Secretary of
Defense directive that a DoD wide effort be undertaken to define and develop a better means and process
for ensuring that C4ISR capabilities were interoperable and met the needs of the warfighter. The first
version was published in June 1996, rapidly followed by version 2.0 in December 1997. The second
version was the result of the continued development effort by the C4ISR Architecture Working Group and
was mandated for all C4ISR architecture descriptions in a February 1998 memorandum by the Architecture
Coordination Council, co-chaired by the Under Secretary of Defense for Acquisition and Technology (USD
A&T), the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence (ASD
C3l), and the Command, Control, Communications, and Computer Systems Directorate, Joint Staff (J6).

In August 2003, the DoD Architecture Framework Version 1.0 was released. It restructured the C4ISR
Framework v2.0 to offer guidance, product descriptions, and supplementary information in two volumes
and a desk book. The objective was to broaden the applicability of architecture tenets and practices to all
mission areas rather than just the C41SR community. Therefore, the first version explicitly addressed usage,
integrated architectures, DoD and federal policies, value of architectures, architecture measures, DoD
decision support processes, development techniques, and analytical techniques.

In April 2007, the DoD Architecture Framework, Versionl1.5 was released as an evolution of the first
version. It reflects and leverages the experience that the DoD components have gained in developing and
using architecture descriptions. However, it was designed as a transitional version providing additional
guidance on how to reflect net-centric concepts within architecture descriptions, and including information
on architecture data management and federating architectures through the DoD. The second version also
incorporates the Core Architecture Data Model (CADM), a data model that consistently described all
modeled aspects as reflected in various artifacts in support of providing a repository. It also emphasized the
use of UML based artifacts to express the different views needed to describe the system.

Since May 2009, DoDAF Version 2.0 has been available. This version is defined as the overarching,
comprehensive framework and conceptual model enabling the development of architectures to facilitate
DoD managers at all levels to make key decisions more effectively through organized information sharing
across DoD, Joint Capability Areas, Component, and Program boundaries. This new version provides an
overarching set of architecture concepts, guidance, best practices, and methods to enable and facilitate
architecture development. The focus is the fit-for-purpose concept which allows defining individual view
points that support special needs. To this end, the artifact focus has to shift from the different diagrams
used in various views and that are harmonized based on a common repository to a common data and
metadata model that drives different view points, including user defined ones.

DoDAF 2.0 extends the view categories significantly. This version also uses the term view point to
emphasize that not the view itself should be the product, but the data that are represented via each view
point. The CADM of earlier version has been replaced by the DoDAF Meta-model (DM2) that supports the
architecture content of the DoD core processes by design. While CADM was derived from the various
views that needed to be aligned to avoid inconsistencies, DM2 was designed to capture the relationships
needed to support qualitative and quantitative analysis. The resulting ability to relate architectural
descriptions, based on a common architecture vocabulary as used by decision makers and war fighter as
envisioned in the NATO COBP, allows better analysis across architectural description. The price is a more
complex data model underlying the view points. As all core processes are in the focus of this version, the
scope had to be moved from a single group of systems towards DoD as an enterprise.

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

For examples the interested reader is referred to the original DoDAF documents that are freely
distributed via the Internet. It is worth to point out that NATO has the NATO Architecture Framework
(NAF), and the UK has the Ministry of Defense Architecture Framework (MoDAF). In order to support a
modeling method in support of these main frameworks, OMG defined the Unified Profile for
DoDAF/MODAF (UPDM) mainly using UML products as the common denominator. Other nations
support similar efforts, such as the Department of National Defence and Canadian Forces Architecture
Framework (DNDAF) of Canada.

The better the simulation engineer knows these modeling and architecture languages, the easier is
communication in the international community as well as within the community of engineers with different
professions that support an exercise, or maybe in real operations in which the simulation engineer’s
expertise is required to ensure success.

Semantic Web Standards

Tim Berners-Lee coined the term “Semantic web.” The semantic web is understood by the community
as a web of data. While the hyperlinked documents of the Internet were merely designed to support
humans, the idea of the semantic web is to add machine-readable and machine-interpretable metadata to the
websites that allow machines to support finding data, make connections and relations between websites,
etc.

Several methods and technologies are needed to make this vision a reality. The needed standards and
tools as currently understood to build the semantic web stack are shown in the following figure.

User Interface and Applications

" —
Trust
Proof
Unifying Logic
Ontologies: Rules:
owL RIF/SWRL
Query:
SEARQL Taxonomies:

RDFS

Cryptography

Data Interchange: RDF

Syntax: XML
Identification: Codifying:
URI UNICODE

Figure 1: Semantic Web Stack

The set of standards that make up the lower left block of the stack (and that are written in bold font)
allowed moving towards a new level of machine support and automatic reasoning in the recent years was
never been possible before. In addition, the technologies are continuously further developed and exchanged
within the semantic web community to foster agreement and improvement.

» The basis for general communication in the web is the use of a machine and vendor independent
codification allowing the interpretation of signals as symbols. This is supported by the use of
UNICODE as the lowest building block.

= The second foundational leg is the use of Uniform Resource Identifiers (URI). Everything on the
web becomes a resource and can be addressed as such in a standardized way.

= The Extensible Markup Language (XML) provides the elementary syntax for resources, which
means allows communicating structure within a resource that can be search for, extracted, etc. It is

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

possible to provide and restrict the structure and content of elements through the use of an XML
Schema. Another approach that is seemingly gaining more and more support is Turtle, which is
XML independent, providing an alternative.

= The Resource Description Framework (RDF) allows to structure resources and their relations
similar to using a data model. Most of these frameworks use XML, but that is not longer
necessary, as alternative exist. However, whenever data need to be exchanged in a consistent way,
which includes the idea of transactions on one or several resources, support of a common RDF is
needed. RDF organizes resources as triples, which provide the structure for higher operations.

= While RDF is more a data model, the use of an RDF Schema (RDFS) compares to the definition of

a taxonomy of terms describing properties and classes of RDF resources. It allows building
hierarchies and complex relationship using well-defining types of associations connecting well-
defined structured tagged with common terms. While RDF works with general triples, RDFS
standardizes the most important of these triples as recognized by the community.

= The Web Ontology Language (OWL) is an extension of RDFS. It adds more standardized terms

describing resources, properties, and relations, such as cardinality, equality, typing, enumerations,
and more. OWL allows reasoning over these extensions, if all supporting resources follow the
standard accordingly.

= Queries about resources do not require that the resources are documented in RDFS and OWL. The

SPARQL Protocol and RDF Query Language (SPARQL) allows searching for
triples, conjunctions of triples, disjunctions of triples, and optional patterns. As such, SPARQL
works with RDF, RDFS, and OWL.

= The Rule Interchange Format (RIF) is not yet standardized, but only recommended. It allows the

communication of constraints within the semantic web stack to ensure consistency between the
layers. An alternative for OWL based resources is the Semantic Web Rule Language (SWRL) that
utilizes description logic subsets of OWL (the dialect OWL-DL).

The use of OWL should not be decided without proper consideration of the issues of decidability and
computational complexity. Not all dialects of OWL are decidable, and even if they are decidable, their
application can lead to non-polynomial computing time. Several papers deal with these challenges. The
simulation engineers should focus on OWL-DL (which is decidable) and preferably even the profiles
defined for OWL 2: OWL 2 EL, OWL 2 QL, and OWL 2 RL. For more information, a good review of
available semantic web tools and standards and their computational constraints is given by Hitzler,
Krotzsch, and Rudolph (2009).

Building a unifying logic that supports all alternatives that becomes the foundation of solid proofs is an
ongoing effort. Together with cryptography (which was originally envisioned to be based on XML as well,
but this idea is no longer supported generally) the proof layer becomes the basis for trusted information
providers that can support the applications. The importance of these ideas and protocols becomes
immediately obvious when we go back to the data discussions in the NATO COBP, the need to initialize
simulation from trusted sources, the need for common initialization, and more. If the infrastructure that
supports the distributed simulation is based on the semantic web stack, many of the tasks of the simulation
engineer are taken care of. Vice versa, the simulation engineer can use personal experiences in distributed
simulation to enhance the ideas accordingly. Tolk (2006) contributed to enhance the vision by actively
pushing the idea of semantic web based modeling and simulation for the next generation of the web. An
interesting perspective on future directions for semantic systems is given by Sowa (2011).

To practically apply these ideas, the simulation engineer has two immediate options: (a) using the
concept to better describe modeling and simulation resources using metadata that is stored in registries, and
(b) using web services to access modeling and simulation resources that are available. This connects
directly back to the four tasks in support of distributed simulation: to identify applicable solutions, to select
the best options, to compose the best solution, and to orchestrate the execution.

The community already started to work on identifying metadata that can be used to describe modeling
and simulation resources, which includes data sources, simulation systems, and more (US DoD M&S CO,
2008). The approach is summarized by Gustavson et al. (2009). The purpose of this specification is to
standardize on the set of metadata used to describe resources in Modeling and Simulation Resource
Repository (MSRR) nodes and similar applications, and to ensure that the product metadata templates will
align with the DoD Discovery Metadata Specification (DDMS) as part of the Global Information Grid
(GIG)/Net-Centric Data Strategy. The idea was generalized in support of a Modeling and Simulation

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

Information System (MSIS) for the US DoD. Similar approaches are conducted in other countries as well.
Several MSRRs are already in use, and there is potential to merge these different approaches based on a
common set of metadata. Current efforts, application of the metadata, tools, and the guiding vision were
recently presented by Gustavson et al. (2009).

To access and utilize modeling and simulation services, Web services are the method of choice in most
cases. In general, Web services are services that can be accessed via the Internet based on the specifications
of the service published as well. The uses for military combat modeling and distributed simulation
applications were described by Tolk et al. (2006), the general ideas were covered by the already mentioned
XMSF projects (Brutzman et al., 2002; Blais et al., 2005).

There are several different categories of Web services. The earlier versions were based on a
combination of the using XML to define the data to be exchanged, the Simple Object Access Protocol
(SOAP) to access the service, the Web Service Description Language (WSDL) — which is based on XML —
to describe the access characteristics of the service, and Universal Description Discovery and Integration
(UDDI) —also based on XML — to support publication and discovery. The general idea was that a Web
service provider described the service characteristics in WSDL and posted them to the UDDI server.
Whoever needed to find such a service downloaded the descriptions from the UDDI and looked for
applicable solutions based on the WSDL description. If a service was found and accessed, the searcher used
XML to provide the needed data and accessed the service via SOAP. The disadvantage was that this
procedure, from the logic very close to a remote procedure call (RPC), required a lot of knowledge
regarding the service interface, the information exchange requirements, etc.

To overcome these constraints, Representational State Transfer (REST) methods were applied to
define RESTful services. The idea of REST is to generalize the interface as much as possible and instead
put the needed information into the data exchanged, not the application programming interface. This allows
making component interactions scalable, deploying them independently, reducing latency, and enforcing
security. As REST allows building wrappers around existing systems, such encapsulation of legacy systems
supports migration towards this new infrastructure. To allow for these approaches, RESTful services
expose all services as resources that are addressed via URI. They are connected via uniform connectors or
channels that are used to exchange messages that comprise all information in form of metadata and data
that the receiving service needs to act on the message. This allows every RESTful service to provide a
uniform interface that addresses the same fundamentals. To these fundamentals belong the following:

= Within the messages, resources are identified by URIs and can be manipulated by the receiver;

= Each message includes enough information to describe how to process the message;

= The receiver uses hypermedia to make state transitions; and

= All transactions are handed by the providing server.

RESTful services have been successfully applied in simulation infrastructures. Examples are given,
among others, by Al-Zoubi and Wainer (2009).

The simulation engineers should observe the developments in the domain of distributed computing.
These tools and standard can support tasks and may even develop to the point that they can replace the
specific simulation interoperability standards given in the last section of this chapter. In any case they can
support these efforts of distributed simulation significantly.

Of additional and increasing interest is the use of standards supporting the gaming industry. This topic
will be dealt with in more detail in the context of Chapter 17 of this book.

Modeling and Simulation Interoperability Standards

This last section gives an overview of the two IEEE Modeling and Simulation Interoperability
Standards: the IEEE 1278 Distributed Interactive Simulation (DIS), and IEEE 1516 High Level
Architecture (HLA). A more technology-oriented overview is given by Tolk (2010). These standards are
dealt with in more detail under different viewpoints also in other chapters of this book, including the
history as well as their role for multiresolution challenges.

The detail given in this section cannot replace a comprehensive introduction. Readers interested in a
comprehensive guide to DIS are referred to Neyland (1997). For the HLA, Kuhl et al. (2000) is a good
place to start, but there are also very good tutorials available during interoperability focused workshops,
such as the Simulation Interoperability Workshops of SISO.

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

Another effort that needs to be mentioned is the Test and Training Enabling Architecture (TENA).
Although not being a de jure standard, the ideas supported by TENA are pivotal to interoperable simulation
systems. TENA is described in detail in Chapter 20 of this book.

IEEE 1278 Distributed Interactive Simulation

In the 1980s, the Defense Advanced Research Project Agency (DARPA) and the US Army initiated
the development of a simulation network (SIMNET) that allowed coupling former stand-alone simulators
to support better training. In this prototype, SIMNET showed how to combine individual tank simulators of
the Combined Arms Tactical Training System (CATT) to enable tank crews to operate side-by-side in a
common synthetic battle space. The individual simulators represented weapon systems on this common
virtual battlefield that had a well defined set of actions and interactions: tanks could move, observe, shot at
each other, exchange radio communication, etc. Individual activities led to status changes that were
communicated via status reports. Interactions were communicated via messages.

As the set of information exchange specifications could be well defined, this resulted in the idea to
standardize these messages, which led to the IEEE1278 Distributed Interactive Simulation (DIS) standard:
the Protocol Data Units (PDUs) captured syntactically and semantically all possible actions and interactions
based on the idea that individual simulators represent individual weapon platforms. Only later, instead of
individual platforms also groups and aggregates (like platoons or companies) were accepted as receivers
and producers of such PDUs, but these groups were understood as individual entities in the battle space as
well.

Following the principles learned in SIMNET, the DIS community defined and standardized PDUs for
all sorts of possible events that could happen during such a military training. Whenever a preconceived
event happens — such as one tank firing at another, two system colliding, artillery ammunition being used to
shoot into special area, a report being transmitted using radio, a jammer being used to suppress the use of
communication or detection devices, and more — the appropriate PDU is selected from the list of available
PDUs and used to transmit the standardized information describing this event. Within a PDU, syntax and
semantics are merged into the information exchange specification.

DIS is still successfully used and supported by a large user community. As mentioned earlier in this
chapter there are still standardization efforts going on under the umbrella of SISO. Furthermore, the
Realtime-Platform-Reference Federation Object Model (RPR-FOM) activities described in the following
section migrated many DIS solutions into the new IEEE 1516 world. Also, DIS-HLA Gateways are often
applied to integrate the functionality provided by DIS conform simulation systems into HLA federations.

IEEE 1516 High Level Architecture

Although Chapter 19 will deal with the High Level Architecture in more detail, a short summary will
be given to allow for a better presentation of the follow-on ideas in the next section. HLA was developed to
unify various distributed simulation approaches within the US DoD and has been adopted by NATO as
well. Under the lead of the US Defense Modeling and Simulation Office (DMSQ), several prototypes were
developed and distributed in several versions. The last version that was submitted to IEEE for
standardization was the HLA 1.3 NG. Many US companies are still using this version to this day, as many
tools were freely distributed by DMSO. The international standardization group under IEEE improved this
version by bringing it up-to-date regarding supported standards and generalizing some of the ideas. For
example, the Backus-Naur-nomenclature used in 1.3 NG was replaced by XML. Furthermore, hard-coded
enumerations were replaced by reconfigurable solutions and configuration tables. The result was the IEEE
1516 — 2000 HLA, which became the main version implemented in Europe and parts of Asia and Australia.
Although most differences between both versions were of editorial nature, gateways are needed to connect
federations that are based on different versions.

As every IEEE standard, HLA was reviewed and updated after 10 years. Under the title HLA Evolved,
this work was conducted under the lead of SISO. The result was the updated version of the standard: IEEE
1516 — 2010 HLA. The main difference between this new version and the older ones is that the information
exchange model became modular, so that part of the information exchange agreement can be changed
during runtime. Furthermore, dynamic link capabilities, extended XML support, increased fault tolerance,

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

and web-based standards were integrated into the concepts supported by HLA-based federations. At the
point in time that this book was written, only some early adopters used the 1516-2010, but several
supporters and organizations already announced the decision to go straight to this new standard version
when they update their federations.

The objective of defining the HLA was to define a general purpose architecture for distributed
computer simulation systems. It defines a federation made up out of federates, which are the simulation
systems, and the connection middleware that allows the information exchange between the simulation
systems.

RPR-FOM and GRIM

When HLA was introduced to the combat modeling and simulation community, most distributed
simulation systems supported DIS in a real-time environment. Many systems had just been modified to
support working not only as stand-alone simulators but to be part of a common virtual battle space. In
particular the community of virtual training simulators saw no real need to conduct another potentially
expensive conversion to support a new simulation interoperability protocol.

In order to facilitate the integration of these simulators without expensive conversions of the systems,
two approaches were used: the use of DIS-HLA Gateways as discussed by Steel (2000), and the
development of a technical standard in form of the Realtime-Platform-Reference Federated Object Model
(RPR-FOM) and the supporting Guidance, Rationale, and Interoperability Modalities for the RPR-FOM
(GRIM). We will focus on the second approach in this section.

The RPR-FOM and GRIM was developed under the leadership of SISO with the goal to implement the
DIS PDU structures within HLA objects and attributes and interaction and parameters as well as to provide
an intelligent translation of the concepts used in DIS to an HLA environment. While the RPR-FOM defines
the information exchange means needed by DIS simulation systems, the GRIM documents the guidelines
on how to use them most efficiently. As the DIS standards evolves continuously, so does the RPR-FOM
and the GRIM as well. As mentioned earlier in this chapter, RPR-FOM and GRIM are SISO standards in
version 1.0, but versions 2.0 and 3.0 supporting new developments and agreements in DIS are worked on
by standardization groups already.

References

Al-Zoubi, Khaldoon, and Wainer, Gabriel (2009). Performing Distributed Simulation with RESTful Web-
Services Approach. Proceedings of the Winter Simulation Conference, Austin, TX, pp. 1323-1334

Atkinson, Ken (2004). Modeling and Simulation Foundation for Capabilities Based Planning. Proceedings
Spring Simulation Interoperability Workshop, IEEE CS Press, Orlando, FL

Blais, Curtis L., Brutzman, Don, Drake, David, Moen, Dennis M., Morse, Katherine L., Pullen, J. Mark,
and Tolk, Andreas (2005). Extensible Modeling and Simulation Framework (XMSF) 2004 Project
Summary Report. Final Report NPS-MV-05-002, Naval Postgraduate School, Monterey, CA

Brutzman, Don, Zyda, Michael, Pullen, J. Mark, and Morse, Katherine L. (2002). Extensible Modeling and
Simulation Framework (XMSF) Challenges for Web-Based Modeling and Simulation. Workshop
Report, Naval Postgraduate School, Monterey, CA

Gustavson, Paul, Nikolai, Ali, Scrudder, Roy, Blais, Curtis L., and Daehler-Wilking, Richard (2009).
Discovery and Reuse of Modeling and Simulation Assets. Modeling and Simulation Information
Analysis Center (MSIAC) Journal, Volume 4, Number 2, pp. 11-20

Hitzler, Pascal, Krétzsch, Markus, and Rudolph, Sebastian (2009). Foundations of Semantic Web
Technologies. Chapman & Hall/CRC

Institute of Electrical and Electronics Engineers. IEEE 1278 Standard for Distributed Interactive
Simulation, IEEE publication, Washington, DC.

Institute of Electrical and Electronics Engineers. IEEE 1516 Standard for Modeling and Simulation High
Level Architecture, IEEE publication, Washington, DC.

Kuhl, Frederick, Dahmann, Judith, and Weatherly, Richard. (2000) Creating Computer Simulation
Systems: An Introduction to the High Level Architecture. Prentice Hall PTR

Extracted from Tolk A: “Standards for Distributed Simulation,” in Tolk A: Engineering Principles of
Combat Modeling and Distributed Simulation, pp.209-242, © John Wiley 2012

Mittal, Saurabh (2010). Agile Net-Centric Systems Using DEVS Unified Process. In: Intelligence-based
Systems Engineering, edited by Andreas Tolk and Lakhmi Jain, ISRL 10, Springer, Berlin, pp.
159-199

Neyland, David L. (1997). Virtual Combat: A Guide to Distributed Interactive Simulation. Stackpole
Books

SISO (2008). Balloted Products Development and Support Process. Administrative Document SISO-ADM-
003-2008, Orlando, FL

SISO (2010). The SISO Vision. Administrative Document SISO-ADM-004-2010, Orlando, FL

SISO website: http:www.sisostds.org (last visited June 2011)

Sowa, John F. (2011). Future Directions for Semantic Systems. In: Intelligence-based Systems
Engineering; edited by Tolk A., and Jain, L.C. Springer-Verlag, ISRL 10, Berlin Heidelberg,
Germany

Strassburger, Steffen, Schulze, Thomas, and Fujimoto, Richard (2008). Future Trends in Distributed
Simulation and Distributed Virtual Environments: Results of a Peer Study. Proceedings of the
Winter Simulation Conference, Miami, FL, pp. 777-785

Tolk, Andreas (2006). What comes after the Semantic Web, PADS Implications for the Dynamic Web.
Proceedings of the 20" ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed
Simulation, Singapore, IEEE CS press, pp. 55-62

US Department of Defense (2007). DoD Architecture Framework Version 1.5. Volume I: Definitions and
Guidelines; Volume 1I: Product Descriptions; Volume I11: Architecture Data Description. US DoD
Chief Information Officer, Washington, DC

US Department of Defense (2009). DoD Architecture Framework Version 2.0. Volume I: Introduction,
Overview, and Concepts: Manager’s Guide; Volume Il: Architectural Data and Models:
Architect’s Guide; Volume I1l: DoODAF Meta-model: Physical Exchange Specification
Developer’s Guide. US DoD Chief Information Officer, Washington, DC

US Department of Defense Modeling and Simulation Coordination Office (US DoD M&S CO) (2008).
Modeling and Simulation (M&S) Community of Interest (COI) Discovery Metadata Specification
(MSC-DMS) Version 1.1. Alexandria, VA

Wainer, Gabriel A. (2009). Discrete-Event Modeling and Simulation: A Practitioner's Approach. CRC
Taylor & Francis, Boca Raton, FL

Wainer, Gabriel A., Al-Zoubi, Khaldoon, Mittal, Saurabh, Risco Martin, Jose Luis, Sarjoughian, Hessam,
Zeigler, Bernard P. (2010). Standardizing DEV'S Simulation Middleware. In: Discrete-Event
Modeling and Simulation: Theory and Applications, edited by Wainer, G., and Mosterman, P.,
CRC Press, Taylor and Francis, pp. 459-493

Zeigler, Bernard P., Praehofer, Herbert, and Kim, Tag Gon (2000). Theory of Modeling and Simulation,
Second Edition. Academic Press, San Diego, CA

ARTICLE PUBLISHED IN THE

M&S JOURNAL WINTER 2012

SPECIAL ISSUE ON INTEROPERABILITY

\M\

Andreas Tolk, Saikou Diallo, Jose Padilla, and Charles Turnitsa:
"How is M&S Interoperability different from other Interoperability Domains?"
M&S Journal, Winter 2012-2013; pp. 5-14

The Interoperability Issue

How 1s M&S INTEROPERABILITY DIFFERENT
FROM OTHER INTEROPERABILITY DOMAINS?

AUTHORS

Dr. Andreas Tolk
Engineering Management
& Systems Engineering
242B Kaufman Hall
Old Dominion University
Norfolk, VA 23529, USA

atolk@odu.edu

Dr. Saikou Y. Diallo, Dr. Jose J. Padilla
Virginia Modeling Analysis
& Simulation Center
Old Dominion University
1030 University Blvd
Suffolk, VA 23435, USA
sdiallo@odu.edu; jpadilla@odu.edu

Dr. Charles D. Turnitsa
TSYS School of Computer Science
Columbus State University
Columbus, GA 31907, USA
cturnitsa@gmail. com

KEYWORDS

M&S interoperability standards

ABSTRACT

During every standard workshop or event, the examples
of working interoperability solutions are used to moti-
vate for ‘plug and play’ standards for M&S as well, like
standardized batteries for electronics, or the use of XML
to exchange data between heterogeneous systems. While

1 INTRODUCTION

these are successful applications of standards, they are off
the mark regarding M&S interoperability. The challenge of
MA&S is that the product that needs to be made interoper-
able is not the service or the system alone, but the model
behind it as well. The paper shows that the alignment of
conceptualizations is the real problem that is not yet dealt
with in current interoperability standards.

O ANSWER THE QUESTIONS OF HOW AND WHY MODELING AND SIMULATION (M&S) INTEROP-

ERABILITY ARE DIFFERENT FROM OTHER INTEROPERABILITY DOMAINS, WE HAVE TO GAIN A

BETTER UNDERSTANDING OF WHAT MAKES M&S SPECIAL FIRST. IN OTHER WORDS, WE NEED

TO UNDERSTAND THE EPISTEMOLOGY OF M&S AND ANSWER THE QUESTION IF AND HOW IT IS

DIFFERENT FROM OTHER RELATED INTEROPERABILITY DOMAINS. TO ANSWER THIS QUESTION,

WE FURTHERMORE LIMIT OUR DISCOURSE AND FOCUS ON M&S SUPPORTING COMPUTER SIMULATIONS AND INFOR-

MATION TECHNOLOGY (IT) INTEROPERABILITY DOMAINS.

2 CURRENT INTEROPERABILITY STANDARDS

One of the most often used examples for solved interoper-
ability challenges are batteries. There is hardly a workshop
on interoperability in which it is not used: based on the stan-
dard that defines measurements like size, electronic data,
voltage, and ampere, the same battery can power a radio,

flashlight, night vision goggles, or the proverbial toy bunny.

Another example closer to software is the use of the
Extensible Markup Language (XML) to exchange data
between heterogeneous systems. The XML standard uses
basic standard foundations, so that many heterogeneous
systems can support them easily (like being fully Unicode
compliant), but is extensible to support complex informa-

tion exchange needs.

11S-SIW=008. Permission is hereby granted to quote any of the material herein, or to make copies thereof, for non-commercial purposes, as
long as proper attribution is made and this copyright notice is included. All other uses are prohibited without written permission from SISO, Inc.

M&S JOURNAL

WINTER 2012-2013

PAGE 5

mailto:atolk%40odu.edu?subject=M%26S%20Journal
mailto:sdiallo%40odu.edu?subject=M%26S%20Journal
mailto:jpadilla%40odu.edu%20?subject=M%26S%20Journal
mailto:cturnitsa%40gmail.com?subject=M%26S%20Journal

How is M&S Interoperability different from other Interoperability Domains?

The final examples of working interoperability solutions
are web services and cloud computing. Although different
in their implementation, the underlying conceptual ideas
are comparable: a service is well defined by its interface
(input and output parameters) and, if necessary, by addi-
tional constraints, such as timing, synchronization points,
and more. The semantic markup for services OWL-S [1]
defines three categories needed to describe services (as
shown in figure 1):

m With the ServiceProfile, the service presents “what the
service does.” As specified in OWL-S, [1] this includes
the description of what is accomplished by the service,
limitations on service applicability and quality of service,
and requirements that the service requester must satisfy
to use the service successfully.

m Within the ServiceGrounding definition, the service
supports different ways “how to access it.” In this part,
communication protocols, message formats, and other
service-specific details such as port numbers are specified.

m Finally, a service is described by a ServiceModel that
defines “how the service works.” This description fulfills
the tasks of detailing the semantic content of requests,
the conditions under which particular outcomes will
occur, and, where necessary, the step by step processes

leading to those outcomes.
Service
Profile

wesenis
et does)

Figure 1: OWL-S

The authors showed in “Ontology Driven Interoper-
ability — M&S Applications,” [2] that OWL-S is one of
the most advanced available standards supporting inter-
operability for M&S applications. These findings were
based on research conducted in support of the Extensible
Modeling and Simulation Framework (XMSF) initiative
that evaluated the applicability of web-based standards to
drive interoperability for M&S [3, 4]. All these standards
are applied successfully, including in the M&S domain.

In addition, we have M&S specific solutions that success-
fully have been standardized via SISO and IEEE, namely
the Distributed Interactive Simulation (DIS) protocol [5],
standardized in IEEE1278, and the Modeling and Simu-
lation High Level Architecture (HLA) [6], standardized
in IEEE1516. Despite significant success stories, M&S
interoperability standards seem to have “hit the wall.” In
recent years, no break-through has been accomplished.
Instead, we look at gradual improvements, but the promised
“plug and play” functionality, as suggested by the battery
example, is still a dream. What is this wall? In the next
section, we will have a look at where we are and how we
got there, and this may help to better understand where
the current challenge lies.

3 A BrIEr HisTorIiCAL OVERVIEW

In order to better understand the current view on M&S
interoperability standards it is necessary to review the
history of distributed simulation.

The use of simulators and simulations in the armed forces
has a long history, including the use of strategic games, life
exercises, and board games. However, with the advance of
computers, a new era of computer simulation and simulators
began. The birth of simulation standards can be seen with
the creation of the Simulator Network SIMNET, which
was a project of the Defense Advanced Research Project
Agency (DARPA). Developed between 1980 and 1990 in
collaboration with DARPA and the U.S. Army, SIMNET
showed how to combine individual tank simulators of the
Combined Arms Tactical Training System (CATT) to enable
tank crews to operate side by side in a common synthetic
battle space. The individual simulators represented weapon
systems on this common virtual battlefield that had a well
defined set of actions and interactions: tanks could move,
observe, shoot at each other, exchange radio communica-
tion, etc. Individual activities led to status changes that
were communicated via status reports. Interactions were

communicated via messages.

If two tanks engaged in a duel, the order of activities
and the data to be exchanged between these entities were
well defined. The shooter decided to engage the victim.
He moved his weapon system, and potentially platform

components like a turret and a cannon into the best direc-

M&S JOURNAL

WINTER 2012-2013

PAGE 6

How is M&S Interoperability different from other Interoperability Domains?

tion, always updating his status, so that other simulators
could update their visualization showing that the tank/
turret/cannon is moving. He shot at the victim. This data
was sent to everyone as well. All observing systems could
visualize the shooting (smoke, flash, etc.). The victim also
received information on the ammunition shot at him such
as velocity, angle, etc. The victim computed the result of
this engagement — like catastrophic kill, movement kill,
firepower kill, etc. — and communicated the result. All
observers, including the shooter, updated their visualiza-
tion of the victim (like being on fire, smoking, or no effect
beside the impact explosion). Based on his assessment of
the effect, the shooter could reengage, or continue with a
new task. The tasks of who is doing what based on what
data was well understood by those simulators embedded as
individual independent entities in the common battle space.

As the set of information exchange specifications could be
well defined, this resulted in the idea to standardize these
messages, which led to the IEEE1278 Distributed Interactive
Simulation (DIS) standard: the Protocol Data Units (PDUs)
captured syntactically and semantically all possible actions
and interactions based on the idea that individual simulators
represent individual weapon platforms. Only later, instead
of individual platforms also groups and aggregates (like
platoons or companies) were accepted as receivers and
producers of such PDUs, but these groups were understood
as individual entities in the battle space as well. DIS is still
successfully used and supported by a large user community.

In parallel to the simulator community that serviced the

The computer based successors also required a distributed
capability, in particular to support higher command training
of distributed facilities. As the earlier war games, these
computer simulations represented aggregates on the opera-
tional level, like battalions and brigades. Again, they were
interpreted as individual entities on the battlefield. MITRE
developed the Aggregate Level Simulation Protocol (ALSP)
to exchange information between these simulation systems.

However, unlike the simulator solution, in ALSP several
units were represented in each system. When these systems
were connected, the protocol ensured that each simulated
aggregate had exactly one simulation system that was
responsible for updates. In all other simulation systems,
the respective aggregate was “ghosted,” which means that a
simulation object was instantiated in the simulation system,
but it was tagged to be controlled by another system and was
only used to make decisions for the aggregates controlled
by the system, e.g., where to place surveillance radars in the
surveillance simulation systems based on the distribution
of tanks in the combat simulation system.

As the diversity of aggregates were higher than that of
platforms and in addition differed from exercise to exercise,
ALSP did not standardize the messages to be exchanged.
Instead, ALSP standardized the syntax to be used, but
allowed to specify the semantics (meaning of information
exchange) in special formats that today would be described
as metadata allowing the interpretation of the exchanged
data. While during the time of “das Kriegsspiel” the
possible units were limited to a set of categories supported

tactical level training needs,
higher commands started to
use computer assisted exer-
cises (CAX) to support their
command post exercises as
well. Ever since Baron von
Reisswitz introduced the
“Kriegsspiel” during his
tenure as war counselor in
Prussia in 1811, [see figure 2]
combat models were used to

by all armies, such as infantry,
cavalry, artillery, scouts, etc.),
ALSP provided a frame to
communicate the participating
entities (or better aggregates),
possible interactions, and the
effects of such interactions.

The High Level Architec-
ture (HLA) was developed to
replace both approaches — DIS

train command post officers.

These exercise support games had well defined units with
well defined interactions, all ruled by very detailed tables
enumerating in detail the effects of each possible interaction.

and ALSP — with a new and
merging approach. Originally
developed within the U.S. DoD, the final version HLA 1.3
NG was handed to IEEE for international standardization,

M&S JOURNAL

WINTER 2012-2013

PAGE 7

How is M&S Interoperability different from other Interoperability Domains?

resulting in the IEEE 1516-2000 and was only recently
updated to the HLA evolved standard IEEE 1516-2010.
Significantly influenced by recent new methods developed
in computer science in general and software engineering
in particular, a very flexible protocol was developed
providing more flexibility and configurability than both
of its predecessors.

The HLA interoperability standard was focused to maximize
the flexibility for all kinds of M&S application domains
and supported M&S paradigms. The information exchange
requirements of a federation are captured in the Federation
Object Model (FOM). This model defines all persistent
objects and their attributes and transient objects and their
parameters that can be exchanged between participating
simulations. While persistent objects have to be created and
then are updated (and the responsibility can be switched
between the participating simulation systems during
runtime), transient objects are like messages created in

case of need and only used once.

Six service groups are provided as a result of general-
izing the synchronization challenges ensuring that all the
required information needed is delivered at the right time
to the right simulation system. The purpose of Federation
Management is to determine the federation. Federates
join and leave the federation using the functions defined
in this group. The purpose of Declaration Management
is to identify which federate can publish and/or subscribe
to which information exchange elements. This defines the
type of information that can be shared. The purpose of
Object Management is managing the instances of shareable
objects that actually are shared in the federation. Sending,
receiving and updating belong to this group. The purpose of
Data Distribution Management is to ensure the efficiency
of information exchange. By adding additional filters this
group ensures that only data of interest are broadcasted.
The purpose of Time Management is the synchronization
of federates. The purpose of Ownership Management is
to enable the transfer of responsibility for instances or
attributes between federates.

HLA significantly increased the flexibility of simulation
federation definitions. Instead of being limited to predefined
information exchange groups, the developer can specify
the objects and interactions and can even support different

time model philosophies. It neither assumes the level of
resolution nor does HLA assume the partition of the battle
space into tactical unit or the phasing of a supported opera-
tion. HLA supports component level simulation, platform
level simulation, and all levels of aggregation

4 WHAT MAKES M&S SpPECIAL?

The last section showed the development of M&S interop-
erability standards with an increase in flexibility and
support of different M&S paradigms. However, the mental
model behind all these developments remained the idea
of one shared virtual battle space that was populated by
individual independent aggregates and/or platforms that
interact with each other.

These individuals, or group of individuals, were well
defined by their own actions and interactions with each
other, which could be represented by boundaries around
the individuals — or a group thereof — being the boundaries
of the simulation system that was responsible for their
simulation and the specification of data that could be
exchanged via these interfaces. The individual becomes
a black box that can represent a simulated system or a live
system, as long as the interface specifications are fulfilled.
They build a perfect participation of the battle space and

what goes on within it.

However, with the introduction of the flexibility provided
by HLA, we opened Pandora’s Box. While DIS enforced
the one shared battle space view by defining syntax and
semantics of the PDUs, and while ALSP ensured with the
ghost concept that simulated entities are only available
once (and merely reflected in other simulation), HLA said

farewell to this paradigm.

The interoperability view of HLA is indeed that the same
objects are represented in two simulations, and that these
objects are represented as the persistent objects in the
FOM. If an attribute changes in one of the representing
systems, the attribute change is communicated via updates.
Nonetheless, we have as many instances of the same object

as we have implementing simulations.

As every participating simulation has been developed for
a special purpose, it is unlikely that the representations
are going to be identical. Actually, it is very likely that the

M&S JOURNAL

WINTER 2012-2013

PAGE 8

How is M&S Interoperability different from other Interoperability Domains?

scope will be different, which means that attributes needed
to describe the object in one context are meaningless and
therefore not even modeled in another context. A simula-
tion system written to support combat operations will use
a different model to represent a main battle tank than a
simulation system written to support logistics. A radio
modeled for support of communications of dismounted
infantry will look different than one modeled to be evalu-
ated in the light of electronic warfare.

As all models are simplifications and abstractions of a
perception of reality in order to support a certain task,
they have to be different. And as simulations are imple-
mentations of models, the implemented objects will look
different as well:

m Simplification takes things away. Even if we start with
a common definition of a real object, we will chop off
different aspects of this real object in the process of
simplification. Therefore, we end up with different scopes.

m Abstraction in general leads to models with different
structures and resolutions. Again, even when starting
with identical observations, the detail represented in two
models is likely to be different. Even worse, if aggregation
is part of the abstraction process, the resulting aggregates
may look very different, resulting in different structures.

To show the challenges deriving from abstraction, we
already introduced the example of ‘number world’ and
‘letter world’ in “Federated Ontologies Supporting a Merged
Worldview for Distributed Systems,” [7]: a system exposes
the six observables al, a2, a3, bl, b2, and b3. In letter
world, the three observables al, a2, and a3 are abstracted
into attributes of 4, and b/, b2, and b3 are abstracted into
attributes of B. In number world, the abstraction of a/ and
bl results in One, a2 and b2 in Two, and a3 and b3 in Three.
Both are plausible models, but they are quite different.
While on this lowest level the common attributes are still
derivable, supporting the information exchange between
the abstractions, what if the resolution for the model is
changed and only 4, B, One, Two, and Three remain in
the models?

Even when starting from an agreed description of reality
that comprises all possible attributes that a participating
simulation may be interested in, the process of simplification
and abstraction is going to produce very different modeling
results. Furthermore, not everything going on in the real

world referent is observable, even when perfect sensors
are assumed. Then it depends on additional assumptions
how to model these “hidden” attributes, and as no refer-
ence for them can exist by definition, different models
may easily result from observing the same system with
the same sensors.

It becomes worse when we take the aspect of perception into
account. In this paper, perception is the physical-cognitive
process of observing reality and building a conceptualiza-
tion of the observation.

m The physical aspect defines what attributes of an object
are observable with the sensoric system of the observer,
or more general, the information about the object that
can be obtained in the process of perception (this can
include gaining insight from literature, discussions with
colleagues, etc.).

m The cognitive aspect is shaped by the education and the
knowledge of the observer. In order to conceptualize the
observation the observer needs to have an internal model
he can map this observation to. A physician will see
more in an x-ray than a layman. An educated mechanic
sees more in an engine than a novice. The subject matter
expert has more internal models to explain an observa-

tion in his field than others do.

Physical and cognitive perception will therefore shape the
model and resulting simulation significantly, even more
than simplification and abstraction does, as perception
results in a different starting point: We no longer can
assume that everybody starts from a common reality, we
all have individual perceptions thereof! This common
conceptual starting point, however, is the necessary
requirement and builds the conceptual foundation for
developing a common information exchange specifica-

tion between simulation systems.

As long as we are starting to support a common theory,
like we did in the successful example of a common
battle space following the laws of Newtonian physics,
we can always track our models and resulting simu-
lations back to the common ground defined by this
theory. We can observe with more accuracy, we can
model with higher resolution, and we can add “missing”
attributes (those that are described in the theory, but
not used in individual models). Actually, following

the philosophy of science, a simulation system is an

M&S JOURNAL

WINTER 2012-2013

PAGE 9

How is M&S Interoperability different from other Interoperability Domains?

executable hypothesis or — once proven to be valid —

an executable theory!’

Mathematically, a simulation system is a production system
representing the theory: starting with the initialization data,
we apply production rules encoded as functions, procedures,
and methods. Every state that is simulated is a valid state
represented by the theory encoded as the simulation. This
is equivalent to assigning TRUE and FALSE values to
such states: if a certain state can be produced (and we can
even add the constraint of ‘within a given time’) it is true,
otherwise it is false. The M&S interoperability challenge
comprises the task to ensure the logical equivalence of all
representations of an object in the federation.

Again, we can start with assuming that we start from the
common ground of a common and accepted description
of reality in the form of an object model that can serve as
the Ubermodell from which all simulation representations
can be derived by pruning and aggregating. We show in [8]
how to apply model-based data engineering to construct
the model from the information exchange needs, but this
algorithm and similar ones only work if we can assure that
all models started from the same common ground. And

even then, strange effects can be observed.

To better address the challenges, a formal approach to
simulation interoperability [9] has been developed and
applied. Without going into the mathematical details, this
approach showed significant shortcomings of our current
M&S interoperability approaches. From the data modeling
theory, we know two categories of dependencies of two
objects 4 and B:

m A is existential dependent on B if 4 can only exist if,
and only if, B exist.

m A is transformational dependent on B if 4 needs to be
changed if B is changed.

None of our current standards support this kind of depen-
dency. We can have a perfect FOM communication in
every aspect of 4 and B, but we cannot communicate the
dependencies. If now two simulation systems implement A4
and B identical despite the dependency, we can end up with
two versions of truth in the same federation, if we delete

or change B: in the simulation system that implements the
dependency, the deletion or change of B implies the dele-
tion or change of 4 as well; but that is not the case in the
system that does not implement the dependency. While
A continues to exist in one federate, it ceases to exist in

another, and all under valid current standard conditions.

So far, all of the examples can be understood as examples
that someone made a mistake: an important detail was not
implemented, a model was over-simplified, an important
relation was overlooked, etc. In addition, our focus has
been on physical-technical models. As these models have
a common referent, this ‘real world’ can always be used to
find out if a model is sufficient or ‘realistic.” The assump-
tion here is, however, that truth exists on its own, it is
independent of the observer, and reality is separated from
the individual who observes it. The traditional scientific
method is rooted in this world view called positivism.
There exists one world and one truth, and it is possible
to find this truth by observation and experimentation.
This world view worked well for Newtonian physics and
the physical-technical models that model it based on this

common ground of a common theory.

However, the M&S community is currently starting to look
into better approaches to support human, social, cultural,
and behavioral modeling. Davis summarizes his research in
as follows: “Fortunately, the social science literature has a
great deal to offer. However, the literature is fragmented
along boundaries between academic disciplines, between
basic and applied research, and between qualitative and
quantitative research. ... Realistically, the research base
is not mature enough to support a coherent expression of
the body of knowledge. The uncertainties and disagree-
ments are profound, on both subject-area facts and even
the nature of evidence and the appropriateness of different
methodologies. Those hoping to find a nicely compiled body
of knowledge that can be used to write computer models
will be disappointed. Further, they will often find that
there are multiple competing “theories.” And, even if a
particular “theory” is chosen, it will be found upon inspec-
tion to involve numerous variants and uncertainties.”’[10]
These findings are supported by other researchers as well.

"Using the scientific method, a hypothesis becomes a theory only after it has been repeatedly tested and confirmed via real world data using experiments. This is in contrast to the
every day use of the term “theory,” where it is often understood as a collection of ideas that are not yet proven. In both cases, however, internal consistency is mandatory. In the rest
of this paper, we will assume that our models are indeed grounded in theory that has been proven to be relevant and is backed by empiric evidence to avoid having to discriminate
explicitly between hypothesis and theory. Whenever this is not the case, it only amplifies the implications of misuse of current practice.

M&S JOURNAL

WINTER 2012-2013

PAGE 10

How is M&S Interoperability different from other Interoperability Domains?

To make things worse for the M&S engineer, we no longer
deal with positivism in this domain, but with interpretivism.
Interpretivism holds the belief that truth is a construct of
the observer. Reality is relative and cannot be separated
from the individual who observes it. The majority of
social and human sciences subscribe to interpretivism.
That means that we have to take the aspect of perception
into account when evaluating if two simulation systems
can operate together.

If two simulation systems implement competing theories,
they can never become interoperable, as the underlying
mathematical production systems produce different versions
of truth. This does not make one of them wrong or the other
solution better. It is a fact of life and no interoperability
standard can solve this challenge: we simply do not know,
and in some cases even cannot know what is needed to solve
the conflict between competing theories. The challenge of
the M&S engineer and of supporting M&S interoperability
standards is to ensure that no competing theories (and
following competing simulation systems) are federated to
produce a common federation model.

In summary, our challenges lay often on the modeling side. It
is understood that while modeling targets the conceptualiza-
tion, simulation challenges mainly focus on implementation,
in other words, modeling resides on the abstraction level,
whereas simulation resides on the implementation level. Our
interoperability problems are derived from the abstraction
level, but our standards only focus the implementation level.

5 IMPLICATIONS

One of the first things to do about these challenges is
to raise the awareness regarding them [11]. It would be
naive to apply standards that were developed for physical-
technical models based on a common theory representing
the positivistic worldview to integrate socio-psychological
models derived from competing theories representing
interpretivism and expect valid results. As pointed out in
“Towards Methodological Approaches to meet the Chal-
lenges of Human, Social, Cultural, and Behavioral (HSCB)
Modeling,” [10], the best way ahead may be to live with
contradicting models. It is highly unlikely that we will be able
to address all problems with one common approach based

on a common theory resulting in a consistent federation.

It is much more likely that the multi-simulation approach
based on multi-resolution, multi-stage, and multi-models
envisioned by Yilmaz et al. [12] needs to be exploited to
support the analysis of these multi-facetted challenges we

are faced with as a community.

Generally, it is necessary to focus more on the abstraction
level (the modeling) when building federations than on the
implementation side. Our approaches to M&S interoper-
ability have been shaped by software engineering and
computer engineering principles that are necessary, but
not sufficient. The alignment of conceptual constraints
is not supported enough by the current approaches and
standards. As we are connecting simulated things we
need transparency of what we are simulating, as the real
world referent use in other interoperability domains has
been replaced in the modeling phase by its representing

conceptualization in the M&S interoperability domain.

It is worth mentioning that it is possible to apply competing
methods in one federation if they are coupled via a common
theory. For example, two agents implementing competing
theories can be coupled by purely exchanging their actions
in the physical world. The underlying conceptual model,
however, is well aware that one agent implements one theory,
the other agent implements another theory. If we know the
agents run into oscillating states or produce inconsistent
results, this is part of the underlying common conceptual
model that allows for this to happen, as both theories are

contained in their agents.

Another aspect is the applicability of current methods
for validation and verification to human, social, cultural,
and behavioral modeling. As pointed out in the paper,
there are many competing hypotheses, and the dearth of
real-world data as well as the epistemological nature of
simulation forcing us into interpretivism. However, as in
interpretivism truth is subjective to the observer and not
objective for the observation, validation becomes relative
as well. As a consequence, socio-psychological hypotheses
may remain in general objectively untestable and cannot
graduate into general common theories. This challenge
increases with the complexity of proposed solutions
and the number of participating hypotheses, resulting in
uncertainties and risks adverse to successful application
of federated approaches.

M&S JOURNAL

WINTER 2012-2013

PAGE 11

How is M&S Interoperability different from other Interoperability Domains?

The fundamental difference between M&S systems and
other software systems is that M&S adds the level of
conceptualization to what needs to be aligned. While other
software systems connect with the real thing or support
the real thing, in M&S systems the “conceptualization is
the real thing” that is simulated: the model is the reality
of the simulation. If we use technical means to make two
simulations interoperable on the implementation level
that are based on competing theories, we merge things
together that do not belong together, and instead of creating
a solution, the result is a conceptual chimera ... or worse.
However, it is well known that conceptual problems cannot
be solved with technical solutions. More work is needed to
make sure that the next generation of M&S interoperability
standards contributes towards a solution of this category
of challenges we are just becoming aware of.

SUMMARY

After all this explanation we still did not have the answer
to the question posted in the title of this paper: How is
M&S Interoperability different from other Interoperability
Domains? The answer is simple: M&S interoperability
requires interoperability of the simulations — that is provided
by the software engineering standards we focused on so far,
including mediation of data representations, conversion of
different unit of measures, mappings between different styles
of enumeration, etc. —as well as composability of the models
[13]. We have to ensure transparency of our conceptualiza-
tions, as they represent the real world references for the
simulation. While other interoperability domains connect real
things and can refer to the same real world referents, M&S
interoperability connects conceptualizations, and we have
to understand what the participating systems concepts look
like in order to operate together. The same real world referent
can have different conceptualization in different models.

The Levels of Conceptual Interoperability Model (LCIM)
[14] addresses these issues for some time. Only interop-
erability domains that are model-driven have the second
challenge.

m The battery is plugged into the system and either connects
to the socket or does not. As long as power is left it is
provided. The battery does not need a model of what it
is powering.

m A web service that connects the fill out order for books
with the inventory list of Amazon doesn’t need a common
model: it connects the real list with the real database.
Integratability and Interoperability is all it has to be
concerned about. The ordered book is either there, or
it is not.

m If two simulation systems exchange data, they need to
support common concepts of a model. As such, there
is a conceptual overlap of the models implemented by
the simulation systems. Within this overlapping area,
the six interrogatives Who, What, Where, When, Why,
and How need to be consistent.

In other words, for the simulation systems, the implemented
model is reality. In order to couple two simulation systems,
there needs to be an overlap; otherwise both systems have
nothing in common to exchange data about. This overlap must
be consistent, which means that the results of computations
regarding the research questions must be identical. If this
is not the case, we end up with two versions of truth in the
federation. This problem of model-based reality is unique to
M&S. Consequently, the application of software engineering
standards cannot solve this problem. Therefore, a new genera-
tion of M&S standards needs to support the alignment of
models to support and ensure not only interoperability, but
also composability, in a form that allows the automation of
such processes wherever possible.

This new generation of M&S standards must ensure the
transparency of models, not only the mediation of simulations.
While standards for real components can focus exclusively on
the exchange of data, model-based components must ensure
that the same concepts are represented consistently in all
participating components. This problem does not occur outside
of the model-based world. If the same real world referent is
modeled or changed inconsistently in model-based components,
this introduces inconsistencies on the conceptual level that are
not necessarily observable. While in real components the real
world reference exist only once, in model-based components
the concept of this one real component can exist independently

in every component.

Even more importantly may become the recognition that
simulations are implemented theories, as it is the case when
human behavior is modeled and implemented. As long as the
simulation systems to be federated support consistent theories,
the upcoming interoperability challenges can be resolved. In

M&S JOURNAL

WINTER 2012-2013

PAGE 12

How is M&S Interoperability different from other Interoperability Domains?

new application domains, such as the emerging domain of
HSCB, many conflicting theories exist. This is a conceptual
block that cannot be solved by M&S interoperability standards.
Federating such models into one common federation must lead
to inconsistencies and meaningless results! Instead, alterna-
tive uses of alternative theories need to be supported by new

approaches like the proposed Multisimulations [12].

This requires a domain of new standard efforts: the efficient
and effective support of exploratory analysis under uncertainty
and disagreement, and supporting development of strategies
that are flexible, adaptive, and robust, as requested by Davis in
[10]. SISO should address these challenges in respective efforts.

Although current standards are not sufficient, they are neces-
sary and are building a strong foundation new approaches can
extend. The authors made first recommendations in “Conceptual
Modeling for Composition of Model-based Complex Systems”
[8] and “Using a Formal Approach to Simulation Interoper-
ability to Specify Languages for Ambassador Agents,” [9],
extending the work presented in [12]. It is now time to focus
on building better tools to support the work of the M&S engi-
neer sufficiently well to help avoid mistakes and guide him/
her to better solutions in support of the customer not only in

the military domain.

ACKNOWLEDGEMENT

Significant parts of the underlying research were funded by
the US Joint Forces Command Training Directorate and the
US Modeling and Simulation Coordination Office.

The authors furthermore thank Hans U. Mair, Johns Hopkins
University/Applied Physics Laboratory, for his critical review
and constructive remarks regarding theories, validity, and
hypotheses.

The paper was originally published as paper 11S-SIW-008
during the 2011 Spring Simulation Interoperability Workshop in
Boston, MA, April 4-8, 2011. It has been awarded with a SIWzie
and is on the Recommended Reading List of the workshop

Copyright 2011, SISO, Inc. Permission is hereby granted to
quote any of the material herein, or to make copies thereof,
for non-commercial purposes, as long as proper attribution
is made and this copyright notice is included. All other uses
are prohibited without written permission from SISO, Inc.

REFERENCES

[1] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila,
Sheila Mcllraith, Srini Narayanan, Massimo Paolucci, Bijan
Parsia, Terry Payne, Evren Sirin, Naveen Srinivasan, and
Katia Sycara (2004). “OWL-S: Semantic Markup for Web
Services,” W3C Member Submission 22 November 2004,
last accessed January 2011 at http:/www.w3.org/Submis-
sion/OWL-S

[2] Andreas Tolk, Saikou Diallo, and Charles Turnitsa (2006).
“Ontology Driven Interoperability — M&S Applications,”
Whitepaper in support of the I/ITSEC Tutorial 2548, VMASC
Report, Old Dominion University, Suffolk, VA

[3] Don Brutzman, Michael Zyda, J. Mark Pullen, and Katherine
L. Morse (2002). “Extensible Modeling and Simulation
Framework (XMSF) - Challenges for Web-Based Modeling
and Simulation,” Workshop Report, Naval Postgraduate
School, Monterey, CA, 22 October 2002

[4] Curtis Blais, Don Brutzman, David Drake, Dennis Moen,
Katherine Morse, Mark Pullen, and Andreas Tolk (2005).
“Extensible Modeling and Simulation Framework (XMSF)
2004 Project Summary Report,” Project Report NPS-MV-
05-002, Naval Postgraduate School, Monterey, CA, 28
February 2005

[5] Institute of Electrical and Electronics Engineers. IEEE
1278 Standard for Distributed Interactive Simulation, IEEE
publication, Washington, DC.

[6] Institute of Electrical and Electronics Engineers. IEEE
1516 Standard for Modeling and Simulation High Level
Architecture, IEEE publication, Washington, DC.

[7] Charles D. Turnitsa, and Andreas Tolk (2007). “Federated
Ontologies Supporting a Merged Worldview for Distributed
Systems,” Association for Advancements in Artificial Intel-
ligence (AAAI) Fall Symposium, Technical Report FS-07-06,
AAALI Press, Menlo Park, CA, pp. 116-119

[8] Andreas Tolk, Saikou Y. Diallo, Robert D. King, Charles D.
Turnitsa, and Jose Padilla (2010). “Conceptual Modeling for
Composition of Model-based Complex Systems” in Stewart
Robinson, Roger Brooks, Kathy Kotiadis, and Durk-Jouke
van der Zee (Eds.) Conceptual Modeling for Discrete-Event
Simulation, CRC Press, pp. 355-381

M&S JOURNAL

WINTER 2012-2013

PAGE 13

http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/OWL-S

How is M&S Interoperability different from other Interoperability Domains?

REFERENCES (CONTINUED)

[9] Andreas Tolk, and Saikou Diallo (2010). “Using a Formal
Approach to Simulation Interoperability to Specify Languages
for Ambassador Agents,” Proceedings of the 2010 Winter
Simulation Conference, B. Johansson, S. Jain, J. Montoya-
Torres, J. Hugan, and E. Yiicesan (Eds.), IEEE CS Press,
pp. 359-370

[10] Andreas Tolk, Paul K. Davis, Wim Huiskamp, Gary L.
Klein, Harald Schaub, and James A. Wall (2010). “Towards
Methodological Approaches to meet the Challenges of
Human, Social, Cultural, and Behavioral (HSCB) Modeling,”
Proceedings of the 2010 Winter Simulation Conference, B.
Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E.
Yiicesan (Eds.), IEEE CS Press, pp. 912-924

[11] Andreas Tolk (2010). “M&S Body of Knowledge: Progress
Report and Look Ahead,” SCS M&S Magazine, Vol. 1,
No. 4, October

[12] Levent Yilmaz, Tuncer Oren, Alvin Lim, and Simon Bowen
(2007). “Requirements and Design Principles for Multi-
simulation with Multiresolution, Multistage Multimodels.”
Proceedings of the 2007 Winter Simulation Conference,
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D.
Tew, and R. R. Barton, (Eds.), IEEE CS Press, pp. 823-832

[13] Andreas Tolk (2006). “What comes after the Semantic
Web, PADS Implications for the Dynamic Web,” Proceed-
ings of the 20" ACM/IEEE/SCS Workshop on Principles
of Advanced and Distributed Simulation (PADS 2006),
Singapore, May 2006, pp. 55-62

[14] Andreas Tolk, Charles Turnitsa, and Saikou Diallo (2008).
“Implied Ontological Representation within the Levels of
Conceptual Interoperability Model,” Journal of Intelligent
Decision Technologies (IDT), 2(1):3-19

AUTHORS’ BIOGRAPHIES

ANDREAS ToLK

Andreas Tolk is Associate Professor for Engineering
Management and Systems Engineering at Old Dominion
University. He is senior member of IEEE and SCS. His

email is atolk@odu.edu.

SAikou Di1ALLO

Saikou Diallo is Assistant Research Professor at the Virginia
Modeling Analysis and Simulation Center of Old Dominion
University. His email is sdiallo@odu.edu.

JOSE PADILLA

Jose Padilla is Assistant Research Professor at the Virginia
Modeling Analysis and Simulation Center of Old Dominion

University His email is jpadilla@odu.edu.

CHUcK TURNITSA

Chuck Turnitsa is faculty member at the TSYS School for
Computer Science at Columbus State University. His email
is cturnitsa@gmail.com.

M&S JOURNAL

WINTER 2012-2013

PAGE 14

mailto:atolk%40odu.edu?subject=M%26S%20Journal
mailto:sdiallo%40odu.edu?subject=M%26S%20Journal
mailto:jpadilla%40odu.edu?subject=M%26S%20Journal
mailto:cturnitsa%40gmail.com?subject=M%26S%20Journal

Simulating Complex Service Systems

16 December 11-14 | Washington, D.C.

The following article has been originally published in the Proceedings of the Winter Simulation
Conference.

Andreas Tolk

Tutorial on the
Engineering Principles of Combat Modeling
and Distributed Simulation

Proceedings of the 2016 Winter Simulation Conference,
edited by T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick

Arlington, VA, Dec 2016, pp. 255-269

Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

TUTORIAL ON THE ENGINEERING PRINCIPLES OF
COMBAT MODELING AND DISTRIBUTED SIMULATION

Andreas Tolk

Simulation Engineering
The MITRE Corporation
903 Enterprise Pkwy Suite 200
Hampton, VA 20666, USA

ABSTRACT

This advanced tutorial introduces the engineering principles of combat modeling and distributed simulation.
It starts with the historical context and introduces terms and definitions as well as guidelines of interest in
this domain. The combat modeling section introduces the main concepts for modeling of the environment,
movement, effects, sensing, communications, and decision making. The distributed simulation section
focuses on the challenges of current simulation interoperability standards that support dealing with them.
Overall, the tutorial shall introduce the scholar to the operational view (what needs to be modeled),
the conceptual view (how to do combat modeling), and the technical view (how to conduct distributed
simulation).

1 INTRODUCTION

Combat modeling and distributed simulation are very challenging and interesting topics. I have been
teaching a graduate course on this topic for several years at the Old Dominion University in Norfolk, VA.
Over the development of the course, more and more students not working in combat modeling related
domains joined me, as the complexity of challenges of their domains could often be mapped to the topics
of this course, that in many aspects became a course for engineering managers and system engineers in
charge of complex simulation-based projects. After the first couple of iterations I decided that I needed a
textbook that addresses all the various challenges, which with the help of friends who are experts in their
related domains I finally finished some years ago (Tolk 2012). Following the experiences made in teaching
this topic for a diverse student body, I structured the topic into four sections.

First, I provide a historical context for the domain of combat modeling and distributed simulation. As
discussed in (Page and Smith 1998), the military domain has its own language and is often separated from
other simulation experts. The second section therefore explains the general concepts by providing the terms
and definitions as well as the universe of discourse for combat models and distributed simulation systems.
The next section introduces the referential domain of combat modeling. It looks into concepts and models
to cope with the situated environment used to describe the virtual battle space, how to move in it, which
effects can occur, and what models are used to represent sensing, communicating, and making decisions.
In combat models, these often boil down to move, shoot, look, and communicate. The final section deals
with the methodological domain of distributed simulation, including discussions of supporting simulation
interoperability standards, such as the Distributed Interactive Simulation (DIS) protocol (IEEE 2012) and
the High Level Architecture (HLA) (IEEE 2010).

The objective of this tutorial is that the participant will understand the main principles of combat
modeling and distributed simulation. He will know the basic algorithms, constraints, and application areas,
and the interplay between the different challenges. Through methods from the fields of operations research,

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 255

Tolk

computer science, and engineering, participants are guided through the history, current training practices,
and modern methodology related to combat modeling and distributed simulation systems. The tutorial
intends to provide a comprehensive overview of the engineering principles and state-of-the-art methods
needed to address the many facets of combat modeling and distributed simulation addressing the operational
view — what needs to be modeled — the conceptional or referential view — how to model the resulting
propertied concepts, activities, and effects — and the technical or methodological view — how to implement
and use a distributed simulation solution.

2 HISTORY

To better understand the state of the art regarding combat modeling and distributed simulation it is beneficial
to know where we are coming from. The military domain has a long standing history of using games to
educate their members in strategic thinking. Games like the Indian Chaturanga, the Chinese game Go, and
Chess were often played by nobility to prepare the future decision makers for their tasks. It may be of
interest that the idea of maneuvers was not really known before the Roman armies trained their soldiers in
”bloodless battles” first documented around 100 B.C. Most soldiers before were “trained on the job.” The
idea of using maneuvers gave the Romans a huge advantage and became a building block for all future
military organizations.

Another significant step was conducted by the Prussians. Baron von Reisswitz introduced the
“Kriegsspiel” in 1811. As the war counselor in Prussia he used a representation of the terrain, dif-
ferent blocks representing the different army branches — like infantry, cavalry, and artillery — guided by a
rulebook on movement and attrition to educate his officers. His son introduced the idea of paper maps,
standardized figures, and better rules in 1824 and was so successful that the Prussian Chief of Staff von
Muffling ordered the use of wargames throughout the Prussian Army. The Prussian successes in battle
did lead many other nations to adopt wargaming. Major Livermore improved the attrition models in 1883
by incorporating historical data to validate his numbers and tried to introduce the idea of wargaming to
General W. T. Sherman, the Commanding General of the U.S. Army. However, still under the impression
of the brutal encounters of the Civil War that required many more human factors than could be captured
in wargaming, he discouraged the use of this approach by stating: "Men are not wooden blocks!” This
hindered the use of wargames in the USA until the modern days, when nations like Germany and Japan
proved the value of this approach on the battlegrounds of two world wars. From the 1930s, through WWII,
and on into the Cold War, the armies of the world (including the United States) developed and employed
many different forms of tabletop wargaming. The complexity of the games required, often, large staffs of
referees, many complicated charts and tables governing the actions units in the game could be ordered to
undertake, and complex calculations concerning the adjudication of not only combat, but logistics operations
and integrated movement functions (airlifts, littoral landings, etc).

The first modern simulators were flight simulators, starting with the Link simulator of the 1930s (first
released by Ed Link in 1929 as a prototype). This was a simple device that was intended to give training
pilots a feel of what it was like to handle the controls in a moving platform, before actually attempting
to fly a plane. The company is still in existence as L3, and is still in the Flight Simulator business. The
first fully instrumented Link unit was sold to US Navy in 1931 for $1,500. Shortly thereafter, the Army
took delivery of its Link Trainers in 1934. Not only were they credited with saving vast sums of money
and time, they also saved the lives of pilots during training, and after (with the skills taught). According
to a report to the US House of Representatives, these trainers were estimated to have saved the Army Air
Corp at least 524 lives, $129,613,105 and 30,692,263 man hours in one year.

In the 1960s as computers became more powerful, and the explosion of ideas concerning input and
output devices began, the idea of visualizing data came back around, and this time it was taken seriously.
All along this time, vehicle simulators became more and more complex and realistic. Finally, in the 1970s
and 1980s the first ground vehicle simulators became available.

256

Tolk

In parallel to the simulators, simulations became more powerful as well (definitions for both will be
given in section 3.1). They represented more and more complex combat situations in more and more
challenging terrains to decision makers in the headquarters in so-called computer assisted exercises (CAX)
(Cayirci and Marincic 2009). Constructive simulation systems stimulated common operational pictures
and received orders from the command and control systems. The supporting de facto standard was the
Aggregate Level Simulation Protocol (ALSP). This protocol supported a world-wide federation of systems
in the USA, Germany, and Korea and was very successful. To close the gap between the simulator and the
simulation world, the High Level Architecture (HLA) was introduced and internationally standardized as
IEEE1516.

Today, the use of simulators and simulations in common federations is the rule for military training
and education. The biggest and most expensive exercise may be Millennium Challenge 2002. It brought
simulators and simulations from all over the nation together for a three week long event (July 24—Aug. 15,
2002), was sponsored by U.S. Joint Forces Command, and has been estimated to have cost approximately
$250 million.

3 GENERAL CONCEPTS

The concepts, terms, and scenario elements of combat modeling were introduced to the Winter Simulation
Conference in (Page and Smith 1998). One of the particular challenges in this domain are the military
terms and abbreviations, but also the special terms used often uniquely in the simulation descriptions. We
can only deal with a very limited subset here and have to refer to additional literature for the interested
reader.

3.1 Terms and Definitions

We already used several terms in the last section that may not be familiar to a scholar or researcher of
M&S in other application domains than defense, but some concepts are also shared. In this section, the
main terms and definitions of concepts are introduced. This is not an easy endeavor. Tuncer Oren compiled
a lexicon of thousands of M&S related terms (Oren 2011). In the context of this tutorial, the Glossary of
Military Terms (U.S. D.O.D. Joint Staff 2010) as well as the Department of Defense (DoD) Modeling and
Simulation Glossary are of particular interest.

Models are target driven, purposeful abstractions and simplifications of a perception of reality. The
perception will be shaped by cognitive, physical, and legal constraints. Simulations are the execution of
models over time, in many cases using computers to execute a programmed version of the model to do so.
If the resulting device is used to provide stimuli and feedback to an individual or a group of trainees, this
device is a simulator. Typical examples are driving simulators or battle simulators that provide a realistic
virtual environment in which individuals or crews can train. If a system explicitly provides stimuli for a
predefined target system in a predefined structure via predefined interfaces, we talk about a stimulator.
They are often used to generate test cases for new system, e.g., to check if a new battle command system
can handle the required number of incoming messages as specified.

In the same context, live, virtual, constructive (LVC) simulation is defined. The easiest way to understand
the three concepts is to look at people, systems, and the operation. If real people use the real systems to
participate in a simulated operation, then we are talking about live simulations. If real people use simulated
systems or simulators to participate in a simulated operation, then we are talking about virtual simulations.
If simulated people use simulated systems to participate in a simulated operation, then we are talking about
constructive simulations. For military training events it is often advantageous to include all three types to
support the needs of the trainees.

The model hierarchy of military simulations is often depicted as a pyramid. On the top, theater/campaign
level models allow to analyze force structures or force designs and provide training for high—level decision
makers and their staff. The next level are mission or battle level models that are used for doctrine, mission

257

Tolk

planning, force employment, and force modernization. Many CAX events are also supported by this level
of models and simulation systems. The difference between theater and mission level is the scope of the
simulated engagement. The activities to defend Western Europe during the Cold War or the military activities
conducted within the Operation Iraqi Freedom are theater level, while main events like the 1942-1943 Battle
for Stalingrad or the 2003 Battle for Baghdad are examples for the mission level. Tactical improvements
as well as weapon system level engagements are covered by engagement level models representing one on
one or many to many duels. Finally, the engineering level provides high-resolution support for Research
& Development of weapon system components. The effect of new ammunition or new types of armor are
simulated on this level.

Another set of terms used to describe the different resolution levels are entity level simulation versus
aggregate level simulation. On the entity level, high resolution models are used representing individual
weapon systems, often simulating all military processes individually. If several systems are combined into
a unit that becomes the simulated entity, we talk about aggregated simulation. If only weapon systems of
the same type are aggregated, we call this a homogeneous unit, otherwise it is a heterogeneous unit.

One of the main challenges in decision making is coping with uncertainties and minimizing the associated
risks. If a simulation does not contain any random parameters and always produces the same output for a
given input, it is deterministic. If probabilistic components are used to represent not only point estimates but
to generate variations in the simulation following the laws of statistics, the simulation becomes stochastic.

When addressing the universe of discourse for a simulation system, we have to address scope, resolution,
and structure. Resolution answers the question of how detailed something is modeled in the simulation
system. The more detail is added, the higher the resolution. Scope answers the question about what is
represented in the simulation system. What has been recognized as important in the viewpoint of one
simulation may have been seen to be neglectable in another simulation system. Structure describes how
observed details are grouped into concepts. The same attributes can be used to describe different concepts
in two simulation models, resulting in different structures that are used to categorize the observations of
the real system. These terms are often subsumed under the challenge of multi—resolution modeling.

The next three terms are often confused as well: fidelity, resolution,and credibility.Fidelity of a simulation
is the accuracy of the representation when compared to the real world system represented. A simulation is
said to have fidelity if it accurately corresponds to or represents the item or experience it was created to
emulate. As discussed above, resolution of a model or a simulation is the degree of detail and precision
used in the representation of real world aspects in a model or simulation. Credibility is the level of trust of
the user of the model. This level can vary and is user dependent as well as application domain dependent.
Credibility is the quality or power of inspiring belief, or the capacity for belief.

The engineering methods of verification, validation, and accreditation (VV&A) help determining if
a simulation is correct and usable to solve a given problem. Validation is defined as the processes of
determining the degree to which a model or simulation is an accurate representation of the real world from
the perspective of the intended uses. The scope is therefore the behavioral or representational accuracy. It
answers the question: Did we build the correct simulation? Verification is the process of determining that
a model or simulation implementation accurately represents the conceptual description and specifications.
The scope is transformational accuracy. It answers the question: Did we build the simulation correctly?
Accreditation is the official determination that a model or simulation is acceptable to use for a specific
purpose. While this is required for military simulations in the USA, other nations are often talking about
acceptance and do not apply the same formal process. A good overview of the state of the art for general
V&V is given in (Sargent 2013).

3.2 Scenario Elements

In this subsection, some military terms are introduced to describe the elements that most likely will make
up a scenario. In order to support the military, the simulation engineer has to understand what the mission
is (the big picture), what capabilities are required to conduct the mission successfully, what relations are

258

Tolk

needed to conduct the tasks in an orchestrated manner, what system can be modeled that provide the needed
capabilities as well as the communication, and what the time constraints are. In other word, what is needed
for an effective and efficient conducting of the mission?

It is pivotal for the simulation engineer to be aware of the harmonization and alignment principle that
addresses the triangle of represented concepts, internal decision logic, and external evaluation logic. It is
obvious that if we want to evaluate something, it needs to be modeled. But how much detail is enough?
The question can only be answered in collaboration with the sponsor, but every detail needs to play a role
in the internal decision rules and must be considered in the external evaluation for success, the measures
of effectiveness — how well are needed function performed — and measures of performance — how much
do they contribute to the success of the mission. If the internal decision rules are not aligned with what
is evaluated as a success externally, we are wasting resources. If the focus lies on different attributes of
the concepts, discontinuities will be observed. It is the task of the simulation engineer to avoid this for all
scenario elements.

3.2.1 Land Components

Land based operations, such as conducted by the army, are characterized by the distribution and range of
the weapon systems, sensors, and communication means, or aggregations thereof. Typical weapon systems
comprise

e Infantry is made up of soldiers, sometimes modeled as squads, with handheld firearms, like rifle,
machine guns, or even anti-tank missiles. They may be protected by body armor, but, in general,
are soft targets that should avoid direct fire without protection.

e Infantry transportation is provided by off-road capable vehicles, like Jeeps or High Mobility
Multipurpose Wheeled Vehicle. They are normally not armored and have only light weapons, like
mounted machine guns.

e Armored Fighting Vehicles, sometimes referred to as Infantry Fighting Vehicles or Mechanized
Infantry Combat Vehicles, are light tanks designed to carry infantry into battle and provide fire
support for them. They carry several soldiers that may be able to engage in battles while being in
the tank and have light to medium weapon systems for direct fire.

e Main Battle Tanks carry the main part of direct fire battles. They have strong armor and heavy
weapons.

e Mortars are high-angle-of-fire weapons that fire ammunition in a high angle so that it falls onto the
enemy. Mortars come in several sizes, from small mortars that can be used and carried by infantries
to bigger mortars that are part of the artillery.

e Main artillery systems are howitzers and rocket launchers. Howitzers can be towed or self-propelled.
As a rule, Howitzers fire ammunition while rocket launchers, often MLRS, launch self-propelled
rockets, but there are exceptions for modern howitzers.

e Army aviation focuses most often on helicopters, often referred to as rotary wing air craft, but also
uses fixed wing air craft. These are used mainly for transportation and air based fire support.

These systems are aggregated into combat or maneuver units, fire support units, combat engineers, air
defense units, and aviation units. Headquarters, communications and networks, and logistics and supply
are additional challenges to cope with.

3.2.2 Air Components

Air components are as complex as land operations, but due to the high speed of their operations, the focus
lies more often on the individual events connected with aircraft in the sky, so called sorties, than the overall
number of entities available. Many models of air operations are therefore more activity driven than there

259

Tolk

land-based cousins focusing on the entities and objects instead. However, their typical weapon systems
include fighters, bombers, and many special task platforms.

o Fighters are highly maneuverable, but often short range aircraft. They engage hostile fighters and
escort own bombers to protect them from air attacks.

e Bombers are less maneuverable, but usually have a long range. They are mainly designed to attack
ground targets or sea targets dropping bombs or launching shorter range missiles.

e Transportation aircraft in various sizes provide the means for air lift operations.

e Drones are unmanned air vehicles that are controlled remotely for surveillance as well as combat
operations.

e Command and Control and Intelligence aircraft provide all kind of means for command, control,
communications, and sensing to air and ground forces. Long range surveillance and Airborne
Warning systems belong to this group as well.

Many modern aircraft, in particular strategic bombers and intelligence platforms, are stealth platforms
that are nearly invisible to radar observers. Due to the technical nature of air warfare, the available
capabilities on the ground — ensuring a quick turn-around maximizing the number of sorties — are also
important and often make up a significant part of the model.

If space-based entities, such as satellites, are modeled, they often fall under the lead of the air forces,
but with increasing importance, more and more simulation systems are introduced with focus on this new
element of warfare.

Another topic that traditionally was covered under air operations but deserves its own group of models
by now is the ballistic missile defense. In particular nuclear components and intercontinental missile defense
are topics covered in models focusing on these topics.

3.2.3 Naval Components

Navy warships are complex and expensive, and are rarely built in large numbers. For models, this provides a
special challenge, as even if two ships belong to the same category, they may still have clearly distinguishable
capabilities reflecting the technical state of the art when they were built.

Naval forces conduct surface operations, underwater operations, and littoral operations. They can
provide massive fire power by naval artillery, including missiles, as well as air power by naval air forces.
They engage in sea mine warfare against surface and underwater vessels, actively as well as passively.

There are many vessel types - giving the caveat already mentioned — such as

e Aircraft carriers that are deployable air bases on the sea.

e Battle cruisers and battle ships provide the artillery firepower and missile launching capability of
naval force.

e Frigates and corvettes are used to protect battle ships and aircraft carriers, in particular against
opposing submarines. Special submarine hunters focus exclusively on battles against enemy sub-
marines.

e Destroyers and cruisers fulfill a similar role as frigates and corvettes, but their main weapon system
is the torpedo.

Tenders provide logistic and maintenance for the navy and the systems.
Submarines are used for underwater warfare.

Coast guard operations usually fall under another jurisdiction than navy operations. As their tasks —

in particular in peace times — are very different from navy tasks, they have to extend navy models to cover
tasks like drug interdiction, alien migration interdiction, fishery violation, and search and rescue operations.

260

Tolk

3.3 Supporting Guidelines

The North Atlantic Treaty Organization (NATO) Code of Best Practice for Command and Control (C2)
Assessment (Alberts et al. 2002) and the Technical Cooperation Program (TTCP) Guide to Experimentation
(Labbé et al. 2006) are both guidelines helping the simulation engineer as well as the operations research
expert to conduct better simulation-based experiments and analysis.

3.3.1 NATO Code of Best Practice for C2 Assessment

The NATO Code of Best Practice for Command and Control Assessment (COBP) was produced to facilitate
high quality assessment in the area of C2. The COBP offers broad guidance on the assessment of C2 for
the purposes of supporting a wide variety of decision makers and C2 researchers. The COBP presents a
variety of operations and operational research methods related to combat modeling that can be applied and
orchestrated in support of analysis and evaluation of C2 related research questions. As such, it is a best
practice guide on how to apply various means of operations research within a combat modeling related
study. Furthermore, the COBP is the product of international collaboration that has drawn together the
operational and analytical experience of leading military and civilian defense experts from across the NATO
nations. It represents the common understanding on how to conduct good C2 research within a coalition.
In summary, the COBP enhances the understanding of best practice and outlines a structured process for
the conduct of operational analysis for C2. It shows how to structure a study that utilizes combat modeling
and distributed simulation. It can be downloaded without cost.

3.3.2 TTCP Guide to Experimentation GUIDEx

TTCP is an international organization that collaborates in defense scientific and technical information
exchange, program harmonization and alignment, and shared research activities for the five nations:
Australia, Canada, New Zealand, United Kingdom, and the USA. The TTCP Guide for Understanding
and Implementing Defense Experimentation (GUIDEXx) provides critical guidance to support successful
defense experimentation. It has been produced by defense experimentation expert representatives from
the defense science and technology (S&T) organizations of these nations. Like the NATO COBBP, it is
distributed without cost.

The main objective of the GUIDEXx is the application of scientific principles to conducting defense
experiments. It emphasizes the need for frequent communication with stakeholders and utilizing integrated
teams to conduct the work under observance of ethical, environmental, political, multinational, and security
issues.

4 COMBAT MODELING

Modeling is the task-driven, purposeful simplification and abstraction of a perception of reality that is
shaped by cognitive, physical, and legal constraints. The following subsections will cope with the combat
modeling challenges that have to be addressed in every defense related model. In addition to (Tolk 2012),
these section utilizes (Deitz and Edwards 2009) and (Strickland 2011).

4.1 Modeling the Environment

The environment is often assumed to be implicitly given, but it deserves as much attention as every other
simulated entity. The reason is that the common battle space or battle sphere actually is situated, i.e.,
it builds the common foundation for how elements move, sense, act, and communicate. If the resulting
virtual battle space differs significantly in two combat models that are linked or federated, the results will
likely differ significantly as well. If the resulting simulation systems are composed, the result will be an
unfair fight: a systemic bias that may be rooted in the different representation of the environment.

261

Tolk

The environment comprises everything required by the simulated entities. If these are land entities,
the modeling of terrain, cover, surface, etc. is of particular interest. For air force entities, clouds and
wind and different temperatures in different air layers are important. For a sea based entities, current and
salinity can be as important as the sea state — i.e. height of the waves. The ocean itself has a climate that
is for submarines as important as the climate of the atmosphere is for the aircraft. So-called space weather
influences satellites and need to be modeled when these entities are needed. In summary, everything that
is perceived to be important for the defense domain should be included and not be simplified or abstracted
away. If a certain attribute of the environment is needed, it has to be captured and modeled somewhere.

To give an example, modeling the environment for land-based entities is more than just using the terrain
elevation. Many other factors are often needed, such as terrain roughness, the degree of urbanization and/or
forestation, the vegetation and soil type, rivers, roads, and bridges, natural and man-made obstacles and
barriers, precipitation, weight bearing capacity and many more details. Questions like "Does the season
make a difference for the model, as trees and bushes may have leaves or not?” have to be asked and
answered.

For modeling the terrain, as a rule cells are used that capture the various properties, such as height
or cover, as attributes. To compute the influence of the terrain on the current status and activities of a
simulated entity, the attributes of the cell the entity is in as well as the attributes affected by the activity have
to be considered in the computation. There are only three regular shapes that can be used to cover a plane
without leaving gaps (excluding Escher—like irregular shapes): triangles, parallelograms, and hexagons.
Triangles have the advantage that three points define a plane so that an area approximated by triangles can
easily be visualized without any gaps in the representation of elevation, as long as the elevation is stored in
the corners of the triangles. Parallelograms - with rectangles being a subgroup - allow the approximation
of the terrain via a chessboard like structure of cells, allowing in particular the use of Cartesian grids, such
as they are used in military maps. Hexagons allow the use of the advantages of triangles (by storing the
elevation in each of the six corners as well as in the center, thus using de facto six triangles to represent
the elevation), plus they provide for computation friendly definitions of distances: when numbering the
hexagons accordingly the distance of two hexagons can be derived by simple additions and subtractions,
avoiding the computationally intensive multiplications and square-root operations needed in Cartesian grid
systems.

For all these aspects, we also have to understand if we are adding detail in support of the simulation
or of the visualization. In the ideal case, every detail should be considered for simulation as well as
visualization, but this practice is not always followed in real-world applications. It is good practice to
understand visualization as a special form of external evaluation and apply the Harmonization and Alignment
Principle: only if an attribute is used for the internal decision process it should also be visualized. Otherwise,
we can easily become guilty to work with ”smoke and mirrors™ as our simulation visualization presents a
different picture than the one used by the simulation itself.

This approach of using grid cells to capture the main characteristics is comparable to creating a ’game
board” on which the simulated entities are acting. Moving, sensing, and acting is guided by rules, similar
to those being created for war games, just that they are captured as algorithms and are parametrized for
more accuracy. However, the mental picture of the game board with the simulated entities being the figures
influences many of the following algorithms, and even standard development.

4.2 Modeling Movement

Modeling movement is strongly connected to the environment. Movement can be modeled implicitly or
explicitly. Implicit mobility models outsource the computation of all mobility factors to produce mobility
maps that are used to look-up the possible speed at runtime. Explicit mobility models use the mobility
relevant properties of the simulated entity as well as of the relevant parts of the environment to compute the
speed on the fly. The list of attributes can be rather impressive. The Army mobility model (AMM) utilizes
the following vehicle attributes: vehicle weight, vehicle geometry (in particular ground contact geometry),

262

Tolk

vehicle power characteristics, dynamic reaction to obstacle impact, vehicle braking characteristics, front
end strength, dynamic reaction to rough terrain, and the driver’s tolerance to longitudinal shock. In addition,
the following environmental characteristics are use to compute the speed: surface type, surface strength,
surface roughness, slope, season, precipitation form (rain, snow), precipitation amount, obstacle geometry,
obstacle spacing, vegetation size, vegetation density, and visibility characteristics.

Another important factor is the current task conducted by the simulated entity. If simply in transfer
mode, cloud cover is no big issue for modern aircraft, but if visual contact is required to fulfill a mission,
this can be a major slow-down factor. Similar observations are true for land forces as well: the same
system in the same terrain will move differently when it simply moves into a new assembly area or when
it is looking for enemies hiding in the terrain.

When modeling movement explicitly, point movement is often used to take these different aspects into
account. Attributes of the system are used to compute a number of points that it can use to move in the
current simulated time step. The attributes of the environment are also used to compute resistance points.
How far a system can move is then defined by the point values. This simple approach allows to add tactical
resistance values to terrain cells: if land mines are laid, it increases the value; if hostile systems can shot
at you in a certain cell, it increases the value; if artillery shoots into a cell, it increases the value; etc. The
total resistance value is then the sum of environment and tactical resistance. Optimization algorithms can
now be used to compute the path of least resistance, providing simulated entities with the ability to move
using artificial intelligence to behave tactically appropriately.

When using models that aggregate several weapon systems into a unit, or even several units into a
higher unit, these point algorithms have to be modified. Usually, the unit schema are used that prescribe
the distribution of systems — or units — within this schema. Typical arrangements on the tactical level are
lines, columns, or wedges. It is common practice to select a reference system within this schema, often
the leader of the formation, that is used to compute the movement. All other systems follow accordingly.
The schema is often used to present a tactical standard schema that needs to be adopted to the current
terrain constraints. For higher aggregates, shapes like circles or rectangulars are often used. To avoid model
artificialities, the tactical schema or often adapted to the terrain.

Finally, the results of a combat situation may influence the speed and movement as well. In particular
casualty numbers that usually slow the speed down. The casualty rate is another factor. The way these
factors influence the speed may be highly dependent on other states of the unit: a veteran unit may slow the
operation down to get a better idea of what is going on while a new unit may panic and rush. In an open
terrain, the unit may run for cover, etc. These are decisions the simulation engineer needs to make with
the user of the model. In any case, all these factors and their effect need to be captured and documented
for validation.

4.3 Modeling Sensing

The easiest way to model sensing is to give simulated entities full access to all the information available in
the model: the ground truth. In reality, weapon systems and units do not see and know everything. Their
decision is based on a perception of their situation that is incomplete and inaccurate. The more information
is provided via communication with other units and the better the results are that are observed by its own
sensors, the better is the perception of the unit.

There are many types of sensors: acoustic sensors, like microphones or hydrophones, that listen for sounds
in the environment. Chemical sensors that identify chemical and biological substances. Electromagnetic
sensors observing changes in the electrical and magnetic field. Thermal sensors, such as infrared sensors,
utilize changes in heat. Optical sensors observe the visible spectrum of the electromagnetic spectrum. For
all these sensor types, the target—background-ratio is pivotal: if the signal of interest is overshadowed
by the same or very similar signals from the background, it can hardly be detected: a weak sound in a
noisy environment cannot be heard, a chemical agent that smells just like the environment does cannot be

263

Tolk

detected. The reason for using camouflage is to blend optically into the environment, etc. Therefore, in
order for a sensor to detect a target, three requirements have generally to be fulfilled:

e The sensor has to be able to detect a certain property or a combination of properties (like an infrared
spectrum)

e The target exposes at least one of the observable properties (like giving out heat in the detectable
infrared spectrum).

e The background does not expose the same observable property or at least is significantly different
(the environment is colder than the target).

Not fulfilling one requirement prevents detection of the target. This requires, however, that important
attributes observable for weapon systems or units must not only be modeled for the targets, but also for
the environment. If we don’t know how hot the environment is, we cannot determine if an infrared sensor
is effective, etc.

The steps of creating a perception are normally observing the assigned area, detecting that something
is present, tracking the movement of this object, classifying the type of the detected object, recognizing
whose side the object is on, and identifying the details. In combat, this usually leads to target acquisition.

Line—of-sight algorithms play a special role, as they define if two systems can see each other or whether
an obstacle is in the way. To save computing time, they are often used in advance to produce visibility
maps that provide the information which environmental cells can be observed from the current one.

Radar and sonar models are more complex than line—of-sight applications and take many additional
factors into account, like transmitted power, the gain factor of the antenna, cross—section of the target radar,
noise and temperature of the radar system, and more. High resolution models also take the earth curvature
into account and compute reflection characteristics of the observed waveform in the observed environment.

There are many options utilized for modeling sensing, from simple cookie—cutter function to computa-
tionally expensive high—resolution models of ray tracing and wave distribution. For the simulation engineer
it is therefore important to capture and document all these aspects to avoid unfair combinations of applied
sensor models that create a systemic bias of this composition, e.g., if one model includes a sensor that can
penetrate an environmental obstacle while the other model simple uses line—of—sight based perceptions. It
is also important to understand which attributes are used to create a perception and what values for them
have what effect on the modeled sensors.

4.4 Modeling Effects

Although there are many effects on the battlefield, the main effect looked for is attrition of the opponent.
Most combat models on the entity level are looking at the probability of hitting the target, i.e., how accurate
is the shot, and the probability that the hit kills the target, i.e., how efficient is the ammunition used against
the armor of the target. To compute the effects, models distinguish between direct fire weapons, that require
a line—of-site between shooter and target, and indirect fire weapons.

The standard formula used for direct fire weapons is:

Py = P+ P (1)

P, is the probability to hit the target with the current shot. The conditional likelihood to destroy a
target when it is hit is Fyy,. The resulting probability to kill a target with a given shot is computed to F.
If you shot more than one shot at the target, the overall probability to destroy combines with n shots to
P! =1—(1—P)". These n shots can result from one shooter shooting » times in a short period of time or
from n shooters shooting at the same target. However, for salvos, like machine gun fire, another formula
is used.

Indirect fire weapons compute the effect by the lethal area of one shell A; compared to the overall
target area A7. One shell destroys a target in the target area with the likelihood of P, = A;/Ar, A salve of

264

Tolk

n indirect fire shells targeted at the same area computes the likelihood to destroy a target in the target area
to Pl =1—(1-PF)".

Not every shot destroys the target completely. In many combat models, the following damage classes
are defined: fire power kill, movement kill, communication kill, and catastrophic kill. The catastrophic
kill is a total loss of the target, the other categories are self explaining. The probability computations for
these events are equivalent to those described above.

Some models alternatively use a game-based point system to compute if a system is destroyed or
not. Every system receives a certain point level in the beginning, and every duel reduces the points while
maintenance can increase the points. If the points fall under a certain threshold, the system receives the
related damage.

For aggregated combat models, the so-called Lanchester equations are still used to compute attrition
of forces. Frederick W, Lanchester formulated them in 1916 to show the usefulness of force accumulation
in modern warfare. He looked at units as force collections that mainly decrease the number of opponents
within duels while simultaneously being decimated by them as well, both based on attrition coefficients
depending on the duel situation. This view results in differential equations describing the battle and the
number of forces to be expected on both sides over time.

In direct fire, the amount of destroyed targets on the blue site dB depends only on the number of red
shooters at the given time R(¢) times the red Lanchester coefficient /.. The same is true on the opposing
site as well. To solve the differential equation for (B(r) and R(¢) at any given time, we need to know the
initial force numbers By and Ry. The result is the so—called square law for direct fire attrition:

Iy[BG — B ()] = I,[Rg — R*(1)])

In indirect fire, the number of destroyed targets is proportional to the amount of targets in the target
area as well as the amount of shooters shooting into this area. Therefore, the amount of red losses depends
on the number of blue shooters, the number of red targets, and the attrition coefficient: dR = [,B(t)R(t).
The blue losses are computed equivalently. Resolving these differential equations results in the linear law
for indirect fire attrition:

Ip[Bo — B(t)] = I;[Ro — R(¢)] 3)

The military operations research community derived many additional Lanchastrian equation to support
the analyses of attrition. Coefficients were derived analytically as well as empirically. Although often
criticized for the many assumptions and constraints, these equations are still in use. So far, no alternative
with a similar solid mathematical foundation has been agreed upon.

4.5 Modeling Communications and Decision Making

We already learned about the importance of communication in the creation of a perception, which can be
highly improved if information from trusted sources regarding the current situation are received by the unit
or weapon system that needs a better situational awareness. Generally, communication between systems
and units is pivotal to exchange information and orders between superior and subordinates. Information
is also often exchanged between neighbored units. The command and control structure between units is
the main guide when setting up theses communication channels. In particular for distributed planning,
the communication of operational orders became increasingly important. While many CAX system still
outsource the decision making and planning to the training audience, constructive simulations become
more and more sophisticated in modeling command, control, and communication of the related pieces of
information.

When modeling the communications explicitly, line—of—sight models coupled with range models are
still an often used option. If two communication device can share information, like radios working on the
same frequency, and they are within range and connected via line—of—sight, they can communicate. More

265

Tolk

detailed simulation models capture for each information exchange requirement the necessary communication
means, the required or usable channels, the required bandwidth, and capacity and time constraints. If more
than one option exists, optimization algorithms can be used to compute the best use of all communications
means.

Some aggregate models assume perfect connectivity, but allow for time delays. Other models use the
connection probability to compute if a message makes it through or not. More and more models explicitly
model network communication models, such as the Optimized Network Engineering Tools (OPNET) model
group. Newer concepts, like airborne networks, or digital radio based tactical Internet options, require new
models that are more and more shared with industry, as they are used for cellphone coverage, etc., as well.

5 DISTRIBUTED SIMULATION

The last sections gave an idea about the multitude of options to model the environment and the entities, and
how they move, look, shoot, and communicate in their virtual battle space. It is already a challenge to ensure
consistency in a single model, but this challenge increases when several independent simulation systems
shall be federated to support a common training event or some analytic activity. The two subsections of
this section will first address some general challenges of distributed simulation and then have a short look
at supporting interoperability standards.

5.1 Challenges of Distributed Simulation

This subsection focuses on what tasks a simulation engineer will face when executing distributed simulations
where independently developed systems are performed on autonomous networked computers supported
by information exchange models and protocols that govern the exchange of information between these
simulation systems. The tasks of a simulation engineer in this context in general can be summarized as
follows:

Selecting the best simulation systems in support of the task,
Composing the simulation systems into a federation,

e Exposing the information needed by other simulation systems conform with the selected interop-
erability protocol,

e Integrating the information provided by other simulation systems via the interoperability protocol
into the respective receiving simulation systems,

e Avoiding inconsistencies, anomalies, and unfair fight situations,

e Addressing additional issues regarding multiple interoperability protocols that are used within the
federation,
Ensuring that all simulation systems and information exchange models are initialized consistently,
Ensuring that all information needed can be exchanged via the supported information exchange
models and interoperability protocols during execution.

We will first look at the various roles that simulation systems and the runtime infrastructures have to
play before we look into commonalities and differences of interoperability and composability.

5.1.1 Simulation Systems and Runtime Infrastructures

The main reason for building a federation is the coupling of functionality of contributing systems to provide
a new capability. To allow this, the common entities, events, and state changes represented in participating
simulation systems must be represented in both systems consistently and synchronized, that means the
challenges of temporal and mapping inconsistencies must be addressed, as discussed later in this chapter. To
this end, the infrastructure that supports the interoperability protocol and the information exchange model
must support three requirements: (1) All information exchange elements must be delivered to the correct

266

Tolk

simulation systems (effectiveness); (2) Only the required information exchange elements must be delivered
to the simulation systems (efficiency); and (3) The delivery must happen at the right time (correctness).

Synchronizing time and avoiding time anomalies is one of the most challenging tasks. It is not surprising
that many solutions focus on real-time solutions that do not require a complex time-algorithm ensuring
consistencies of temporal cause—effect chains in multiple time representations.

Just adapting an interface to a protocol is generally not sufficient to prepare an interoperable solution.
No matter how we create the federation, the individual simulation systems must be able to fulfill a set of
tasks as well. This needs to be supported by the design of the simulation system from the beginning:

e All information that needs to be provided from the system to the federation needs to be retrieved
and mapped to the protocol used.

o All information provided by the federation to the simulation system needs to be read from the
protocol and mapped to internal representations.

e The simulation system must consider in its algorithms which information it can change and it needs
to update, and which information is owned by another system and only represented for awareness.

e The simulation system must be able to set its time in accordance with the supported protocol,
actively and passively.

5.1.2 Interoperability and Composability

The M&S community understands interoperability quite well as the ability to exchange information and
to use the data exchanged in the receiving system. Interoperability can be engineered into a system or
a service after definition and implementation. Alternative data representations can be mediated into each
other as long as the constraints are understood. Only when data have to be disaggregated (which requires
that the information that got lost in the aggregation process be reinserted) the engineer has the problem
from where to extract this needed information, but often heuristics can be applied that lead to satisfactory
results.

Composability is different from interoperability. Composability is the consistent representation of truth
in all participating systems. It extends the ideas of interoperability by adding the pragmatic level to cover
what happens within the receiving system based on the received information. In contrast to interoperability,
composability cannot be engineered into a system after the fact. Composability requires often significant
changes to the simulation to ensure that a research question is either answered equivalently in all participating
simulation systems, or it is not answered at all. Inconsistent versions of truth are not allowed.

5.2 Interoperability Standards

Two standards have been developed for simulation interoperability that will be described here. Many
alternative options are possible, like using not standardized, but internationally successfully applied solutions
as described in (Powell and Noseworthy 2012), or using more general solutions like semantic web methods,
but describing these options goes beyond the context of this tutorial.

5.2.1 IEEE 1278: Distributed Interactive Simulation (DIS)

The IEEE 1278 Standard for Distributed Interactive Simulation (DIS) evolved from the SIMNET project
of DARPA. There are five volumes: IEEE 1278.1 — Application Protocols; IEEE 1278.1A — Supplement
to Application Protocols: Enumeration and Bit-encoded Values; IEEE 1278.2 — Communication Services
and Profiles; IEEE 1278.3 — Exercise Management & Feedback (EMF): Recommended Practice; and IEEE
1278.4 — Verification Validation & Accreditation. Of particular interest for this tutorial are the enumerations
that standardize the so—called Protocol Data Units (PDU) used to exchange information.

DIS was mainly developed to support simulators. They are connected via a network supporting the
application protocol, such as an Ethernet token ring. The PDUs are broad—casted from the sending simulator

267

Tolk

to all other simulator. If they can use the information, they do so, otherwise they ignore the data package.
The PDUs are standardized to the bit level. Each PDU comprises of a header and the pay load. The header
allows the receiving simulator to decide if this data is of interest. They payload comprises the information
describing details on the originating and receiving entity and the type of event. There are 50 types defined,
such as fire, detonation, and collision events, but also transmitter, designator, and signal events. Some
PDUs allow to create new objects or delete objects no longer needed.

The general characteristics of DIS are the absence of any central management; all simulations remain
autonomous and are just interconnected by information exchange via PDUs; each simulator has an au-
tonomous perception of the situation; cause-effect responsibilities are distributed for the PDUs to minimize
data traffic. There is no time management or data distribution management. The PDUs are transmitted in
a ring or on a bus and each simulator uses PDUs that are directed at one of his entities.

5.2.2 IEEE 1516: High Level Architecture (HLA)

The IEEE 1516 Standard for Modeling and Simulation High Level Architecture is defined by three core
volumes, all updated in 2010: IEEE 1516 — Framework and Rules; IEEE 1516.1 — Federate Interface
Specification; and IEEE 1516.2 — Object Model Template (OMT) Specification. In addition, the IEEE
1730-2010 - Recommended Practice for Distributed Simulation Engineering and Execution Process (DSEEP),
augmented by the IEEE 1730.1-2013 IEEE Recommended Practice for Distributed Simulation Engineering
and Execution Process Multi-Architecture Overlay (DMAO), are of interest, as they define rules and guidelines
on the development of standardized simulation federations.

HLA was developed to unify various distributed simulation approaches within the US DoD and has
been adopted by NATO as well. The objective of defining the HLA was to define a general purpose
architecture for distributed computer simulation systems. It defines a federation made up out of federates,
which are the simulation systems, and the connection middleware that allows the information exchange
between the simulation systems. To this end, three components are defined by the technical parts of the
standards:

e The HLA Rules describes the general principles defining how the federation and the participating
federates work together, i.e., how responsibilities for updates are shared, who does what when, etc.

e The Interface Specification between the connection middleware which is called Runtime Infrastruc-
ture (RTI) and a federate, which provides an application interface in both direction: what services
provided by the RTI the simulation system can call, and what services the RTI will call in order
to request something from the simulation system.

e The Object Model Template (OMT) that defines the structure of the information exchange between
the federates via the RTL

In order to make sure that (1) all information required is provided to the right federate, (2) only the
information required is provided to the right federate, and (3) the information is provided at the correct time,
six management areas are provided for effectiveness, efficiency, and timeliness: federation, declaration,
object, data distribution, time, and ownership management.

The Object Model Template (OMT) defines what information can be exchanged. In principle, there are
two categories of information that can be exchanged, which are persistent objects and transient interactions.
The main difference is that interactions are distributed just once while objects are created, they can be
updated, they can change ownership, and they can be destroyed. All interactions and objects including
parameters and attributes and other definitions build the Federation Object Model (FOM). The information
exchange within the federation is done in orchestration of RTI services with the OMT definitions. The
information provided in the OMT defines what information can be exchanged between the participating
federates, the services provided by the RTI defines define how the information can be exchanged.

268

Tolk

6 CONCLUDING REMARKS

This tutorial could hardly scratch on the surface of all topics. The simulation engineer supporting this
domain has to an expert in many domains and support bridging many gaps between important experts.
He needs to understand the fundamentals of combat and the related missions and tasks, he has to know
the basics about the weapon systems and the tactics and procedures, and he has to understand how to
model all aspects accordingly. Once modeled, the simulation system must be implemented allowing to
be used in distributed operations and exercises. Therefore, he needs to understand the computational
and conceptual challenges of distributed computing, applied to the defense domain. As such, combat
modeling and distributed simulation remain one of the most challenging application domains within the
M&S discipline and provide many valuable lessons learned for other domains interested to apply M&S in
their field on a comparable scale, such as health care and medical simulation are currently aiming at.

REFERENCES

Alberts, D. S. et al. 2002. NATO Code of Best Practice for Command and Control Assessment. Washington,
DC: CCRP Press.

Cayirci, E., and D. Marincic. 2009. Computer Assisted Exercises and Training: A Reference Guide. Hoboken,
NIJ: John Wiley & Sons.

Deitz, P. H., and E. W. Edwards. 2009. Fundamentals of Ground Combat System Ballistic Vulnerabil-
ity/Lethality. American Institute of Aeronautics and Astronautics.

IEEE 2010. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) — IEEE
Std 1516-2010, 1516.1-2010, 1516.2-2010. Piscataway, NJ: Institute of Electrical and Electronics
Engineers, Inc.

IEEE 2012. IEEE Standard for Distributed Interactive Simulation — IEEE 1278.1-2012. Piscataway, NJ:
Institute of Electrical and Electronics Engineers, Inc.

Labbé, P. et al. 2006. Guide for Understanding and Implementing Defense Experimentation GUIDEXx.
Norfolk, VA: The Technical Cooperation Program, NATO ACT.

Oren, T. 2011. “The many Facets of Simulation through a Collection of about 100 Definitions”. SCS M &S
Magazine 2 (2): 82-92.

Page, E. H., and R. Smith. 1998. “Introduction to Military Training Simulation: a Guide for Discrete
Event Simulationists”. In Proceedings of the 1998 Winter Simulation Conference, edited by J. C.
D.J. Medeiros, E.F. Watson and M. Manivannan, 53—-60. Piscataway, NJ: Institute of Electrical and
Electronics Engineers, Inc.

Powell, E. T., and J. R. Noseworthy. 2012. “The Test and Training Enabling Architecture (TENA)”. In
Engineering Principles of Combat Modeling and Distributed Simulation, edited by A. Tolk, Chapter 20,
449-477. Hoboken, NJ: John Wiley & Sons.

Sargent, R. G. 2013. “Verification and Validation of Simulation Models”. Journal of simulation 7 (1):
12-24.

Strickland, J. 2011. Mathematical Modeling of Warfare and Combat Phenomenon. Raleigh, NC: Lulu
Enterprises Inc.

Tolk, A. 2012. Engineering Principles of Combat Modeling and Distributed Simulation. Hoboken, NJ:
John Wiley & Sons, Inc.

U.S. D.O.D. Joint Staff 2010. Department of Defense Dictionary of Military and Associated Terms.
Washington, DC: Department of Defense.

AUTHOR BIOGRAPHY

ANDREAS TOLK is Computer Science Principal in the Simulation Engineering Department of The
MITRE Corp., Hampton VA USA. He is a Fellow of the Society for Modeling and Simulation (SCS). His
email is atolk@mitre.org.

269

