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Abstract. Unmanned Aerial Vehicles (UAV) have been widely adopted in many applications, from surveillance to
delivery. More UAV delivery businesses are expected to be launched in the foreseeable future to meet food, goods,
and medicine needs for residents living in smart cities, remote areas, or places lacking runways. As the density of
UAVs operating in a community increases, collision avoidance becomes critical concerning the safety of personnel,
property, and UAVs. In the last decade, many solutions have been suggested for collision avoidance scenarios, where
typical solutions require integrated sensing, information exchange, and on-board decision-making. However, includ-
ing these essential components increases the cost and makes it unaffordable for small-size UAVs in terms of payload
weight and power consumption. Inspired by the Metaverse-enabled by Digital Twins, Blockchain, Augmented Reality
(AR)/Virtual Reality (VR), and the fifth generation (5G) wireless communication technologies; we propose LoCASM,
a low-cost collision avoidance scheme in Microverse, a local-scale Metaverse, for UAV delivery networks. LoCASM
only requests position (GPS), altitude, velocity, and direction (PAVAD) information from each UAV; relieving the
burden of expensive and energy-consuming components. By mirroring UAVs’ PAVAD information and the city land-
scape in the Microverse, the computing-intensive tasks, including UAV tracking, trajectory prediction, and collision
avoidance management, are migrated to the Microverse server on the ground. A proof-of-concept prototype of the
LoCASM system has been built, and the simulation experimental study has validated the design.
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1 Introduction

The fast development of Unmanned Aerial Vehicles (UAV) technologies and the wide expansion
of their applications in various sectors signify a transformative leap toward a more automated and
efficient future.1, 2 With UAVs increasingly being deployed for surveillance, delivery, and inspec-
tion purposes, their integration into society is becoming more pronounced.3, 4 UAV integration is
particularly significant in smart cities, remote areas, and regions where traditional delivery infras-
tructures, like runways, are non-existent or inadequate.5 As such, the potential for UAVs to meet
critical needs for food, goods, and medicine is vast, promising to bridge gaps in accessibility and
convenience for residents in these areas.

Besides security6, 7 and privacy8, 9 concerns inherited from legendary Internet-of-Things (IoT)
networks, as the skies become busier with these UAVs, ensuring their safe operation becomes
paramount. The density of UAVs operating simultaneously in a community introduces a complex
challenge: collision avoidance.10, 11 Collision avoidance is a technical hurdle and a crucial safety
concern that impacts the well-being of on-ground personnel, properties, and UAVs themselves.
The significance of collision avoidance research, therefore, cannot be overstated. It is essential for
the sustainable growth and acceptance of UAV technology in public and commercial spaces.
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Collision avoidance research is foundational in developing systems and protocols enabling
UAVs to navigate densely populated airspaces safely.12 It involves creating sophisticated algo-
rithms and sensor technologies that allow UAVs to detect, communicate, and maneuver around
each other and obstacles in real-time.13 This research is inherently multidisciplinary, incorporat-
ing insights from robotics, artificial intelligence, aerospace engineering, and information technol-
ogy.14, 15

Moreover, successfully implementing collision avoidance technologies is vital for garnering
public trust and regulatory approval.16 As UAVs become more commonplace, ensuring their safety
is essential to prevent accidents that could set back the adoption of this promising technology.
Furthermore, effective collision avoidance systems open the door to more complex and varied
applications of UAVs, pushing the boundaries of what is possible in delivery services, emergency
response, and urban planning.

In the past decade, the challenge of ensuring UAV (Unmanned Aerial Vehicles) safety through
effective collision avoidance has garnered significant attention. Three critical components are
essential to these avoidance systems: integrated sensing, information exchange, and on-board
decision-making. Integrated sensing allows a UAV to perceive its immediate environment through
technologies like radar and LiDAR, enabling it to detect potential obstacles. Information exchange
involves UAVs communicating with each other and ground control and sharing vital data such
as position and intended flight path to maintain safe distances. Lastly, on-board decision-making
empowers a UAV to process sensed information in real time and make swift decisions to avoid
collisions. Together, these elements form the backbone of advanced collision avoidance strategies
widely proposed and explored.

However, implementing these sophisticated systems poses a significant challenge for small-
sized UAVs due to increased costs, payload weight limitations, and heightened power consump-
tion. Integrating advanced sensors, communication systems, and computing capabilities necessary
for collision avoidance increases the overall cost, making it economically unfeasible for smaller,
budget-constrained UAV operations. Furthermore, these additional components add weight, push-
ing the UAV beyond its payload capacity, which can hinder the UAV’s operational efficiency or
ability to carry essential goods. Power consumption is another critical concern; the energy re-
quired to run these advanced avionics can drastically reduce the UAV’s flight time and operational
range, limiting its utility. Thus, while collision avoidance is crucial for the safe operation of UAVs,
especially in dense airspaces, finding a balance that allows small-sized UAVs to adopt current
technologies without compromising their performance or mission capabilities remains a signifi-
cant challenge.

Drawing inspiration from the vast potential of the Metaverse, which is powered by Digi-
tal Twins, Blockchain, Augmented Reality (AR)/Virtual Reality (VR), and fifth-generation (5G)
wireless communication technologies, we introduce a cost-effective collision avoidance strategy
named LoCASM (Low-cost Collision Avoidance Scheme in Microverse). LoCASM utilizes Mi-
croverse,17, 18 a localized version of the Metaverse tailored for UAV delivery networks. Unlike
traditional systems that depend on costly and power-intensive components, LoCASM requires
only basic information from each UAV, such as position (GPS), altitude, velocity, and direction
(PAVAD), significantly reducing the hardware and energy demands on the UAVs.
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The core innovation of LoCASM lies in its use of the Microverse to offload complex computing
tasks from individual UAVs to a centralized server on the ground. By replicating the UAVs’ PAVAD
data and the city’s layout within the Microverse, LoCASM can efficiently manage UAV tracking,
trajectory forecasting, and collision avoidance without burdening the UAVs themselves. Hence,
the LoCASM approach enhances the scalability of UAV delivery networks by minimizing on-
board computing requirements and improving safety and efficiency. We have developed a proof-
of-concept prototype of the LoCASM system, and our simulation-based experimental studies have
confirmed the effectiveness and reliability of the LoCASM design.

The rest of the paper is organized as follows. The background knowledge and related work are
presented in Section 2. Section 3 explains the principles of Microverse, a local-scale Metaverse,
in detail and introduces LoCASM. Section 4 describes the data set we collected and reports the
experimental results. Finally, Section 5 presents our conclusions and discusses ongoing efforts.

2 Background and Related Work

2.1 Digital Twins-enabled Metaverse

The idea of Digital Twins (DTs) was first introduced by Grieves in 2003, which was initially used
to describe the procedure of industrial manufacturing.19 Thanks to the exponential development
of enabling technologies such as the Internet of Things (IoT), sensing system, communication,
and simulating tools, DTs enjoyed rapid growth during the following decade and were redefined
by the National Aeronautical and Space Administration (NASA).20 Compared to the traditional
simulation process, DTs utilize the real-time sensor data and historical data of the physical object
(PO) to create a logical replica to realize more accurate simulations. Innovated by this new concept,
numerous studies on DT-enabled manufacturing emerged in recent years, covering various industry
domains. For instance, the assembling process can benefit from the accurate simulation using a
DT-based system, which improves the quality and precision of the workflow21.22

As defined in,23 Digital Twins can be considered as the first stage of the development of
Metaverse, which indicates a hypothetical virtual environment connected to the real physical
world—such connection leverages real-time data synchronization as well as other aspect of en-
tanglement. Limited by the capability of current technology, the development of Metaverse is
restricted to an early form, for example, in a ”Micro” scale18 focusing on certain applications or
services for a certain domain.

Combined with other technologies such as blockchain, a DT-enabled prototype of a univer-
sity campus was proposed to support social good.24 Leveraging a 3D modeling engine, virtual
avatars of multiple users are created inside the virtual campus, reflecting their real-time status.
Another example leverages the DT technique together with Artificial Intelligence to simulate the
performance of a UAV system. By introducing a convolutional neural network (CNN) to the UAV
autonomous network, the safety performance of different scenarios was evaluated.25 Moreover, a
UAV DTs information forecasting model is proposed to support rapid medical resource delivery.26

Based on the improved AlexNet neural network, the performance, such as transmission delay and
task completion time, outperforms other approaches. However, the above two UAV system studies
were both simulated on a software platform, and no physical simulations or tests were performed.
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2.2 Collision Avoidance Approaches for UAV Networks

The major algorithms of current research for onboard collision avoidance for UAV systems can be
categorized into geometric methods, trajectory optimization methods, and sense-and-avoid meth-
ods.11

Traditional geometric approaches determine the avoidance strategy according to the results of
geometric analysis. To prevent the violation of the minimum distance between UAVs or between
UAVs and obstacles, these approaches calculate the estimated collision time based on current ge-
ometric locations and velocities of the UAVs. Some researchers utilize databases like Automatic
Dependent Surveillance-Broadcast (ADS-B) and the Global Positioning System (GPS) to evaluate
the worst collision situation by calculating the point of closest approach (PCA)27.28 Assuming that
all transferred information like positions and velocities are accurate,27 proposed ”Vector Sharing
Resolution” to solve possible conflicts. However, most commercial UAVs are not equipped with
ADS-B, and the accuracy of GPS is highly related to geographical location.

Trajectory optimization can be further categorized into potential field methods and geo-optimization
methods. The difference is that the potential field methods introduce the concept of force-field
to determine the behaviours of the UAVs including strategies against collision threats.29For in-
stance,30 proposed an optimized potential field (APF) algorithm to support collision avoidance
and trajectory setting in a three-dimensional space. Compared to traditional APF methods, the
modified algorithm overcomes the restriction of single UAV trajectory planning and expands to
multi-UAV situations. On the other hand, geo-optimization approaches rely on geographical data
to generate the best trajectory planning with the help of certain algorithms such as Bayesian opti-
mization, gradient descent, random tree algorithms, etc.31 is an example of introducing closed-loop
rapidly-exploring random tree algorithm and variations for path planning of UAVs. The experi-
ments involved simulations not only in software and hardware but also in real flight tests.

Compared to potential field and optimization methods, sense-and-avoid highly relies on the
sensors mounted on the UAVs. Instead of setting a strategy for multiple UAVs, sense-and-avoid
approaches focus on detecting obstacles and avoiding collision for an individual agent, which sim-
plifies the whole algorithm to evaluate possible conflicts between UAVs and between a certain
UAV and environmental obstacles. This collision avoidance scheme can rapidly respond to any
possible conflicts by leveraging various types of sensors on board, such as radar and sonar. Gageik
et al.32 presented a lightweight solution based on sensing technologies like low-cost ultrasonic and
infrared range finders. Although this may introduce extra noise compared to other expensive sen-
sors, the proposed approach managed to restrain the computation burden and reduce both memory
and time costs.

3 Principle and Architecture

The design rationale of LoCASM is to leverage the task-oriented Microverse, a localized Meta-
verse that creates a DT-based virtual space using real-world information and UAVs’ PAVAD data.
In the framework of LoCASM, complex computing tasks are migrated from individual UAVs to
a centralized server on the ground. This design favors the operational environments in which
UAVs are under different administrations. LoCASM does not depend on the collaboration among
UAVs. Instead, as long as each UAV communicates the PAVAD data with the ground control, the
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Fig 1 LoCASM Architecture.

Microverse-based collision avoidance system would take over all the computing-intensive tasks,
including UAV tracking, trajectory forecasting, and collision avoidance. We envision the LoCASM
scheme, shown in Fig. 1, will enhance the scalability of UAV delivery networks by minimizing
on-board computing requirements and improving safety and efficiency.

3.1 System Architecture

Figure 1 shows a hierarchical architectural view of the envisioned LoCASM framework. Following
the design principle of Microverse systems, LoCASM categorizes the diverse components of the
Metaverse into specific levels, each serving distinct roles.

Since LoCASM is designed for a Microverse covering a smart community or smart city, the
physical environment is initiated in the digital space by creating the digital twins of main objects,
such as buildings, trees, roads, towers, and other objects that potentially may obstacle the flight
path of UAVs. Then, UAVs and other mobile objects will be created in real-time when the system
is operating.

The physical layer contains a variety of UAVs performing delivery tasks over the local commu-
nity. Each of the UAVs is equipped with sensors transferring real-time information such as PAVAD
data to the local server. Besides the directly communicated data, simple semantic information
is also generated by lightweight onboard AI algorithms such as low-cost object recognition and
further transmitted to the server instantaneously. After certain processing by the server, this infor-
mation is subsequently stored in a structured database, ensuring the creation of a comprehensive
repository.

In LoCASM, we adopt semantic communication to reduce the workload for the communica-
tion system. Each UAV does not transmit raw data to the LoCASM server but the meaning or
intent of the information. It offers a transformative approach to reducing data size in UAV net-
work communications.33 By prioritizing the transmission of semantically significant information,
unnecessary data that does not contribute to the intended message’s understanding can be filtered
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out, leading to more efficient use of the limited bandwidth available in UAV networks. The seman-
tic filtering ensures that only the most relevant, meaning-laden data is transmitted, significantly
reducing the volume of data that needs to be sent. Consequently, semantic communication not
only alleviates the burden on the network’s capacity but also enhances the operational efficiency
of UAVs by enabling faster and more reliable communication, which is particularly crucial in sce-
narios requiring real-time data exchange and decision-making, where the rapid dissemination of
critical information can be lifesaving or mission-critical.

Leveraging the pre-constructed virtual community environment, the Microverse layer recon-
structs a virtual replica of mobile units, including UAVs, using dynamic semantic information
provided by them. Consequently, any observed occurrences or deviations inside the tangible realm
are promptly reflected within the digital domain.

The synchronization of various elements not only provides a visible monitoring of the whole
delivery process but also serves to enable various functionalities of the framework. Based on the
various information collected from the physical realm, the local server would have a clear observa-
tion of the delivery system as well as any new elements compared to the original virtual environ-
ment. For instance, with the help of lightweight onboard object detection deployed on UAVs, the
local server is informed of unexpected obstacles such as new infrastructures, parking vehicles, and
pedestrians. Utilizing semantic communication as an alternate approach, it is no longer necessary
for UAVs to transfer enormous video frames or even stream them to the server. Instead, the local
server only needs to collect key features of the objects that can describe interesting characteristics
for creating a virtual replica inside the Microverse. Compared to the traditional way of sending
raw data, semantic communication offloads computation pressure and reduces network overheads,
especially for large UAV swarms.

3.2 LoCASM algorithm

A collision scenario is determined by the distance relationship between an UAV and any other
obstacles including other UAVs or environmental objects. As shown in Figure 2, a collision may
happen between UAV A and obstacle Y when the distance DAY is less than Safe Distance Dsafe.
The distance situation can be mathematically expressed as:

DAY = ||rA − rY || < Dsafe (1)

where rA and rY are the position vectors of UAV A and obstacle Y. Similarly, the real-time distance
between UAV A and obstacle X is safe at the moment. Unlike traditional approaches, LoCASM
does not require onboard sensors to generate a detection range11 to determine the risk of collision.
Equation (1) is evaluated according to the collected PAVAD data and the static database of the
environmental objects. For example, the position vectors are calculated by GPS information while
the Safe Distance Dsafe is determined by real-time velocities, GPS deviations, network latency,
etc.

Similar to traditional delivery networks, UAV delivery tasks are assigned to local warehouses
to ship items to certain targets. As shown in Figure 3, a screenshot of a delivery network in
Rwanda established by Zipline,34 where the delivery routine is predetermined according to the
destination. In such case, the low-cost collision avoidance strategy for UAV A and Obstacle Y can
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Fig 2 Collision distance.

Fig 3 Zipline delivery network in Rwanda.

be straightforward: If Y is another UAV, the local server would ask the higher UAV to increase
the elevation while the lower UAV to decrease until the altitude deviation is larger than Dsafe.
Similarly, if Y is a static obstacle, such as an environmental object inside the virtual Microverse
space, the server would send instructions for A to fly higher until Dsafe is satisfied. Compared
to a traditional geometric method, which relies on the computation of PCA,27 LoCASM not only
maintains the original delivery routine in longitude and latitude but also reduces the computation
requirements.
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Fig 4 (a) Screen shot of UE5-based LoCASM prototype. (b) Original trajectories of two UAVs

4 Experimental Results and Analysis

4.1 Experiment Setup

The experiments employ several mini 3 UAVs in the parking lot of the engineering building from
our testbed premises, utilizing the same Wireless Local Area Network (WLAN) that connects to the
local server inside the building. A Pixel 7 smart phone installed with specially developed Android
application collects data from various sensors to the Digital Twin (DT) in the virtual environment.
The vital parameters such as position (GPS), altitude, velocity, and direction (PAVAD) are trans-
mitted as JavaScript Object Notation (JSON) packets, ensuring the Virtual Replica’s location in
the Microverse is synchronized.

To validate the feasibility of our proposed LoCASM framework, we develop a prototype using
Unreal Engine, accurately modeling the actual engineering building. The LoCASM prototype
includes virtual replicas of the UAVs, as shown in the red circle in Figure 4 (a), which reflect their
real-world position in real time.

As illustrated in Figure 2, one of the key points is to determine the safe distance Dsafe for
the collision avoidance model. The choice of Dsafe can be affected by many factors, such as the
size of UAVs, network latency, and the accuracy of the positioning sensors, etc. In our case study,
two UAVs are allocated near our engineering building finishing delivery tasks according to their
separate routines. The virtual representation of the scenario is shown in Figure 4 (b), where UAV
A is flying following the red trajectory while UAV B is approaching following the green arrow.

The approximate calculation of Dsafe can be mathematically expressed as:

Dsafe = SizeA + SizeB +GPSA +GPSB + VA ×RTDA + VB ×RTDB (2)

where the UAVs are considered spherical objects with a radius of Size and GPS stands for the
deviation of GPS position. RTD and V represent round-trip delay (RTD) caused by network
latency and the maximum velocity of the UAVs, respectively.

Considering the UAVs used in the experimental case study are identical, Eq.(2) can be simpli-
fied into:

Dsafe = Size× 2 +GPS × 2 + (VA + VB)×RTD (3)

assuming the UAVs’ size, GPS deviation, and RTD are the same.
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Fig 5 (a) 3D trajectories of both UAVs. (b) Relative distance compared to Dsafe

4.2 Results

To measure the approximate GPS deviation, the UAVs are operated near the building’s parking
lot. The Return to Home(RTH) function is utilized to measure the accuracy of GPS signals. To
get the best results, we chose an open parking lot area without nearby obstacles blocking the GPS
satellites. The tests are run on both UAVs for ten rounds in various flying routines. The worst case
shows 1.86 meters in deviation.

Meanwhile, real-time data like GPS and velocity are transmitted from the UAVs to cellphones
and further to the local server inside the building in the form of JSON packets with time stamps.
Thus, the RTD can be calculated by: RTD = RTDdc + RTDcs, where RTDdc stands for UAV-
to-controller RTD and RTDcs stands for controller-to-server RTD. After ten field test sessions, the
maximum RTDdc adds up to 48 ms when the UAV is flying in high-quality mode. On the other
hand, based on the Wireless Local Area Network (WLAN), the worst delay for controller-sever is
31 ms in total.

Limited by the UAVs we possess and the flying restrictions, the LoCASM simulation is oper-
ated inside the UE5-enabled virtual system. The original trajectories of the two UAVs are illus-
trated in Figure 4 (b), where UAV A is flying at a fixed velocity of 10 m/s and B at 5 m/s. If we
set the size of UAVs as 0.5 m, maximum GPS deviation as 2 m, and RTD as 80 ms, Dsafe can be
approximated by Equation 3 as 6.2 m. Considering other possible factors, we adopt Dsafe = 7m
for simulation of the collision avoidance. As shown in Figure 5, the original trajectories will reach
the closest point where D = 4m at Time = 4s, when the two UAVs are flying along two perpen-
dicular roads at different horizontal levels, and their locations are updated for every one second.
We can notice that both UAVs change their flying altitude at the third second according to the
LoCASM scheme, where the higher UAV rises and the lower UAV dives so that the horizontal
deviation satisfies the safe distance. The relative distances of the original and modified routine are
calculated in Fig. 5 (b).

4.3 Discussion

A more accurate way to measure the deviation of positioning sensors is using the Real-Time Kine-
matic (RTK) positioning35 technique, which can correct the errors of current satellite navigation
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(GNSS) systems such as GPS. With the help of RTK receivers or RTK UAVs, we can acquire high
positional accuracy of the UAV itself within 10 cm. The corresponding safe distance can be much
smaller then using traditional GPS signals.

5 Conclusions

This paper introduces LoCASM, a lightweight collision avoidance system for UAV-enabled delivery
based on a task-oriented, edge-scale Microverse system, and validates it through a case study.
The prototype of a smart local delivery Microverse for smart communities demonstrated that the
task-oriented Microverse is promising to significantly alter the traditional ways of managing local
delivery systems.

In proposing the current prototype LoCASM based on the Microverse, our future work will
focus on several aspects. First of all, a complete vision of the Microverse Platform that reflects
not only the elements in the case study but also other infrastructures in the local community will
be recreated to enable a full experiment for framework test. Moreover, the current study is con-
strained by limited equipment, such as the selection of UAVs and sensors. A more comprehensive
evaluation of the delivery procedure, which is closer to real life, will be conducted to test more
benchmark analyses in various UAV delivery scenarios. Finally, according to the various capa-
bilities of different UAVs, more complicated algorithms, including path forecasting and trajectory
planning, will be adopted.
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12 E. Blasch, P. Kostek, P. Pačes, et al., “Summary of avionics technologies,” IEEE Aerospace
and Electronic Systems Magazine 30(9), 6–11 (2015).

13 R. Sabatini, A. Roy, E. Blasch, et al., “Avionics systems panel research and innovation per-
spectives,” IEEE Aerospace and Electronic Systems Magazine 35(12), 58–72 (2020).
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