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Abstract—There has been a great interest in deploying large-
scale Low-Earth Orbit (LEO) satellite constellations for wireless
communications. This paper shows that LEO satellite constella-
tions developed for communication purposes can be exploited for
ground target imaging applications, where a unique advantage is
to achieve super-high imaging resolutions that are not achievable
via other imaging techniques. A new imaging algorithm is
developed for this novel integrated sensing and communication
(ISAC) application based on delay-sensitive signal processing
and irregular sensing data exploitation. Imaging performance is
analyzed. Simulations with the practical SpaceX Starlink satellite
orbital data are conducted to verify both the new algorithm
and the analysis results. This paper demonstrates that while
the resolution of conventional satellite imaging is limited to sub-
meters, the new method can potentially use only a small set of
LEO satellites to achieve sub-centimeter resolution.

Index Terms—Millimeter-wave imaging, LEO satellite constel-
lation, Synthetic aperture radar (SAR), Integrated Sensing and
Communication (ISAC), Starlink

I. INTRODUCTION

It is expected that the future sixth-generation (6G) mo-
bile communications will see the convergence of terrestrial
and satellite communications [1], where one of the major
directions is to deploy large-scale Low-Earth Orbit (LEO)
satellite constellations to support global mobile broadband
communications, even over the seas or in remote areas that
do not have traditional mobile communication support [2].
Several LEO satellite constellations have already been in use
[3]: The Telesat system comprises 117 satellites; the OneWeb
system comprises 720 satellites; and the well-known SpaceX
Starlink system has over 3000 satellites deployed in space
already, with over 50, 000 satellites in planning. Especially, the
success of the SpaceX Starlink system has stimulated many
other companies and countries to develop their own large-scale
LEO satellite constellations.

These constellations are mainly designed for communica-
tions because only the large mobile communications mar-
ket can defray the huge deployment and maintenance costs.
Nevertheless, it is highly desirable to reuse them as sensing
platforms to add extra sensing values, which has been largely
an open problem [4].

Space-borne sensing has a lot of unique applications. One of
the important applications is to generate ground images, either
optical images or synthetic aperture radar (SAR) images. Com-
mercially available satellite imaging has a resolution limited
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to around 0.25 meters, for both optical and SAR imaging. As
the state-of-the-art, some classified satellite imaging systems
may have an augmented resolution of up to 0.1 meters. It
has been difficult to further increase the resolution for better
recognizing finer targets [5].

This paper shows that large-scale LEO satellite constella-
tions have the unique capability of imaging ground targets
at a super-high resolution of sub-centimeters, an order of
magnitude higher than today’s state-of-the-art. Such a high
resolution is almost impossible to achieve with traditional
satellite imaging techniques that are limited to using a single
satellite. As a novel integrated sensing and communication
(ISAC) application, the new imaging method reuses commu-
nications satellites for sensing purposes without any hardware
change, nor requiring any extra radar transceivers.

The new imaging method relies on many satellites to work
jointly to generate an image. The imaging principle is similar
to that of the millimeter-wave/Tera-Hz (THz) imaging used in,
e.g., airport screening systems [6][7][8]. Nevertheless, there
are many important differences to deal with, such as larger
delay, faster movement, larger Doppler shift, and weaker signal
strength. The most fundamental difference is that traditional
millimeter-wave or THz imaging uses large 2D or 3D antenna
arrays with antennas evenly spaced at a half-wavelength reg-
ular distance. For example, an array using 736 transmit (Tx)
antennas and 736 receive (Rx) antennas to electronically scan
25,600 antenna positions within a regular grid of 50cm×50cm
aperture was proposed in [8]. This kind of scan over a 2D
regular grid is impossible for satellites. In contrast, our new
method does not require a regular sensor grid. It exploits the
data acquired by satellites at any arbitrary locations along their
flight trajectories.

The organization of this paper is as follows. Section II
describes the satellite constellation imaging model. Section III
develops the imaging algorithm and studies its performance.
Section IV presents simulation and experiment results. Con-
clusions are given in Section V.

II. SYSTEM MODEL

Large-scale LEO satellite constellations such as the Starlink
create a cellular structure similar to mobile networks, with
satellite antenna beams replacing terrestrial cellular towers [9].
At any given time, a cell on the ground is illuminated by one
or more beams. The size of the cell is determined by the beam
width. Each satellite beam only serves this cell for a short time.



(a) (b)

Fig. 1. (a) Satellite orbits. (b) Satellites jointly image a ground target.

The cell is continuously served by the satellites flying over,
as shown in Fig. 1 (a).

Conventional satellite SAR imaging [10][11] uses a single
satellite only to generate an image. The range (Y-direction in
Fig. 1) resolution is ∆Y = c

2B , where c is the speed of light
and B is the signal bandwidth. For example, Starlink has a
beam signal bandwidth of 250 MHz, so the SAR imaging
resolution is 0.6 meters. The resolution is fundamentally
limited by B or the available spectrum resource. It is not
likely to assign tens of GHz bandwidth to satellite imaging
applications in the RF or microwave band. The millimeter-
wave or THz bands are not suitable for long-distance satellite
transmissions due to the heavy propagation loss. Therefore,
it is hard, if not impossible, to achieve sub-centimeter or
millimeter-level resolution with conventional techniques.

By contrast, LEO satellite constellations provide a new way
to enhance the imaging resolution by orders of magnitude. Fig.
1 (b) illustrates the new concept of using multiple satellites
to jointly image ground targets. When a satellite flies over a
target area, it illuminates the target and records the reflected
echoes. Multiple satellites within this area can transmit and
receive at the same time with orthogonal beam signals. These
satellites are called valid satellites and their data are collected
and processed together to generate an image of the target.
These valid satellites effectively form a virtual antenna array.
The size of the array is the synthetic aperture which determines
the imaging resolution.

Consider the imaging configuration in Fig. 2, a satellite
moves along a trajectory r′ = (x′, y′, z′) while imaging a
target located at r = (x, y, z). It transmits signal p(t) and
receives the echo signal

ŝr′(t) =

∫
r

σrp(t− τr′r)dr+ v̂r′(t), (1)

where τr′r is the propagation delay, σr is the target reflection
coefficient, and v̂r′(t) includes any unwanted noise, interfer-
ence, and clutter [12]. The signal is processed to generate an
image based on the SAR principle.

The satellites can transmit either radar signals such as
Frequency-Modulated Continuous Wave (FMCW) [10] or
communication signals such as Digital Video Broadcasting -
Satellite - 2nd Generation (DVB-S2X) signal waveform [13],

Fig. 2. Coordinates of the satellites and targets. A valid satellite (red dot)
enters the sensing area (red dotted circle) and collects sensing data at various
locations along its orbit trajectory.

the fifth generation (5G) mobile signal waveform, etc. Reusing
communication signals directly for sensing is more attractive
because it reduces hardware complexity and cost. Especially,
while one satellite is transmitting signals to ground receivers
for communications purposes, the receivers on this satellite
and other valid satellites can passively receive the echoes
simultaneously for sensing and imaging purposes. There is
no need to switch between the communication mode and the
sensing mode. There is no need for extra circuits of radar
signal modulation/demodulation.

However, reusing satellite communication signals for SAR
imaging is a completely new problem. Conventional satellite
SAR imaging uses pulsed radar waveforms that have high peak
transmission power to combat heavy path loss. Communica-
tion satellites have much lower transmission power since only
one-direction propagation loss, either from satellite to ground
or from ground to satellite, is encountered. They do not need
to consider the extremely weak echo signals ŝr′(t).

III. SATELLITE CONSTELLATION IMAGING AND
PERFORMANCE ANALYSIS

A. Delay-sensitive signal processing

If a communication signal is used, the transmitted signal
can be written as

p(t) =

K−1∑
k=0

bkg(t− kTs)e
j2πfct, (2)

where bk is the kth symbol, Ts is the symbol duration, fc is
the carrier frequency, g(t) is the normalized baseband pulse
such as the root raised cosine pulse waveform, and K is the
total number of symbols. The received signal (1) thus becomes

ŝr′(t) =

∫
r

σr

K−1∑
k=0

bkg(t− kTs − τk)e
j2π(fc+fd)(t−τk)dr

+ v̂r′(t), (3)

where τk is the propagation delay and fd is the Doppler-
shifting.



The difference between imaging signal processing and com-
munication signal processing is that the former does not need
to detect each symbol bk. But rather, it just needs to use
a correlator to compress ŝr′(t) into a single data sample.
Considering this, a special advantage of using communication
signals is that K can be arbitrarily large to enhance correlation
gain. We propose to use large K to provide sufficient gain to
mitigate the heavy propagation loss. However, this introduces
a special delay issue that we must address, i.e. τk is no longer
the constant τr′r. But rather, it varies among symbols and the
variance becomes significant when K is large.

Proposition 1. Let the satellite speed be the vector u =
[ux, uy, uz]

T , the satellite position at k = 0 be r′ =
[x′, y′, z′]T , and the target location be r = [x, y, z]T . Then

τk =
2(r′ + kTsu− r)Tu− 2c∥r′ + kTsu− r∥

c2 − ∥u∥2
, (4)

where (·)T denotes transpose and ∥ · ∥ is norm.
Proof: During the symbol interval k, the symbol bk is

transmitted at time kTs, reflected by the target, and received
by the satellite after τk seconds. The signal’s traveling distance
is cτk = ∥r′ + kTsu − r∥ + ∥r′ + (kTs + τk)u − r∥, where
the first term in the right-hand-side is the distance from the
satellite to the target while the second term is the distance from
the target to the new satellite location after τk seconds. Move
∥r′ + kTsu− r∥ to the left-hand-side, and take the square of
both sides, i.e. (cτk − ∥r′ + kTsu− r∥)2. After some tedious
but straightforward deductions, we can get (4). □

Note that (4) is for the same satellite transmission and
receiving only, but can be easily extended to multiple different
receiving satellite cases. From (4) we can readily see that the
difference between the delay τ0 and τK−1 can be much larger
than the symbol during Ts with large K. The receiver needs to
calculate the delay τk using (4) and use the modified waveform

p̂(t) =

K−1∑
k=0

bkg(t− kTs − τk)e
j2π(fc+fd)(t−τk) (5)

as a correlator to demodulate (or, pulse-compress) the received
signal into a scalar data sample

sr′ =

∫
ŝr′(t)p̂

∗(t)dt =

∫
r

σr

∫
t

|p̂(t)|2dtdr+ vr′ , (6)

where (·)∗ is complex conjugation and vr′ denotes noise.
In practice, however, it is inconvenient to generate a dy-

namic correlator p̂(t) for each satellite location r′ in real-time.
A fixed correlator is preferred. For this, we can exploit the
property that the delay τk is approximately a linear function
of k with ∥r′ − r∥ as the y-intercept coefficient. This means
we can estimate τ̂k with a fixed reference r′ − r and use it
to design the correlator. The difference between τ̂k and τk is
approximately a constant which we write as τr′r = τ̂k − τk.
The data sample obtained at the antenna position r′ is thus

sr′ =

∫
t

|p̂(t)|2dt
∫
r

σre
j2π(fc+fd)τr′rdr+ vr′ . (7)

Note that we have assumed the Doppler-shift fd is constant
and the flight trajectory is a straight line during the trans-
mission of the K symbols. This is reasonable because their
variations are much less than the delay variations. However, if
K is too large to maintain the assumptions, we can compensate
for them by considering fd and r′k in τk expression (4).

If p(t) is the FMCW radar signal, the data sample can be
obtained similarly. In this case, p(t) = ej2π(fct+0.5βt2) with
sweeping frequency β. Due to the extremely long propagation
delay, we need to design the p(t) with a much-reduced dura-
tion [10]. For example, we can design the waveform based on
a much-reduced reference propagation distance and transmit
the FMCW waveform with relatively long interruptions. This
might degrade the potential pulse compression and pulse
combining gains. After de-chirping [12], we can get a data
sample at the antenna location r′ in the same form as (7).
Delays can be mitigated similarly as (6) by converting (4)
from τk to τ(t) and kTs to t.

B. Image reconstruction with irregular satellite locations

For 2D imaging, the goal is to reconstruct a target image
X with I × J pixels, whose elements (or pixel values) are

Xij = σr∆x∆y, 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1. (8)

The target location r = (x, y, z0) is discretized into

x = i∆x+ x0, y = j∆y + y0, (9)

where ∆x and ∆y are discretizing step sizes, x0 and y0 are
shifts. The pixel strength |Xij | depends on the target reflection
coefficient σr and the target area ∆x∆y covered by this pixel.
The values of ∆x and ∆y can be chosen according to the
theoretical imaging resolution ∆X and ∆Y . In this paper, we
use ∆x = ∆X and ∆y = ∆Y .

The image pixels Xij are estimated from the received data
samples sr′ . To construct an image of N = IJ pixels, we
usually require that the number of data samples be much
larger than N . Although we usually have just a finite, and
usually small, number of valid satellites passing over a target,
each valid satellite can conduct a lot of sensing operations
and acquire a lot of data samples. As an example, Fig. 1 (a)
shows the STARLINK-71 satellite moves along its orbit and
passes over the target located in Binghamton, NY. It can keep
sensing the target until flying out of the sensing area. The
sensing area is determined by the elevation or viewing angle
θ of the target (see Fig. 2). Each satellite can collect a huge
amount of sensing data. Therefore, the total number of data
samples can be much larger than N .

However, the challenge is that the sensor locations can not
form a 2D regular grid with a half-wavelength grid distance.
Instead, the data samples are obtained from a set of arbitrary
satellite locations on a set of satellite trajectories. This means
many conventional SAR imaging algorithms such as the
Range Migration Algorithm (RMA) and the Matched Filter
Algorithm (MFA) [14] can not be applied because they assume
a regular sensor grid to apply 2D FFT. Fortunately, we have
studied this problem and developed appropriate algorithms to



reconstruct images with irregular sensor locations in [15]. The
difference between this paper and [15] is that data samples are
obtained from a few trajectories, not random locations within
a 2D grid. We adopt the simpler algorithm which we called the
Back Propagation Algorithm (BPA) in [15] because it allows
us to analyze pixel signal-to-noise ratio (SNR) conveniently.
We will show by simulations that BPA is reliable with data
samples obtained from a few satellite trajectories, which was
not studied in [15].

To construct the image, we stack the columns of X into an
N -dimensional column vector x = vec(X). Assume we have
collected M data samples from M satellite sensing positions
r′m = (x′

m, y′m, z′m), m = 0, · · · ,M − 1. We stack the data
into an M -dimensional column vector y, whose mth element
is ym = sr′m . Then we have

y = Hx+ v, (10)

where the vector v includes noise, interference, and clutter.
The element of the M ×N matrix H is

Hmn = ej4πRmn/λ (11)

where λ is the wavelength and

Rmn = Rm,jI+i = ((x′
m − i∆x− x0)

2

+ (y′m − j∆y − y0)
2 + (z′m − z0)

2)1/2 (12)

is the distance between the antenna and the image pixel.
Note that this is obtained based on (7) where the movement-
induced Doppler and satellite location difference have been
compensated.

Based on (10), BPA reconstructs the image as

x̂ = HHy. (13)

where (·)H is the Hermitian transpose. The computational
complexity is O(MN). The new imaging method is outlined
in Algorithm 1.

Algorithm 1 Satellite Constellation Imaging Algorithm
1: Sensing: At each satellite position r′, transmit signal p(t)

(2), receive signal ŝr′(t) (3), conduct correlation (6) to get
data sample sr′ (7).

2: Imaging: Stack sr′ to data vector y, construct matrix H
(11), and calculate image x̂ via (13).

C. High-resolution imaging performance analysis

Proposition 2. The imaging resolution is

∆X = ∆Y =
λ

4
tan θ. (14)

Proof. Following the SAR imaging principle [15], the imag-
ing resolution is

∆X = ∆Y =
λR

2D
(15)

where R is the distance between the satellites and the target,
and D is the array aperture in each dimension [12]. D is

determined by the satellite height and the target elevation angle
θ. From Fig. 2 we have tan θ = R/(D/2), which leads to the
resolution expression (14). □

It can be seen that signals with centimeter wavelengths λ
can guarantee sub-centimeter imaging resolutions as long as
there are a sufficient number of valid satellites in the desired
elevation angle θ.

One of the major concerns for high-resolution satellite
imaging is the SNRs of the received signal (3) and the
calculated pixel (13). The first SNR is constrained by the
limited transmission power of communication signals and
large propagation loss. The second SNR is constrained by the
limited reflection strength from the tiny pixel area ∆x∆y. The
communication satellites are designed for one-way transmis-
sion between the satellite and the ground device only while
for sensing and imaging we have to consider the strength of
the echo signal received by the satellite antenna instead. These
issues have not been addressed well in the literature.

From radar principles [12], the received signal strength is

Pr =
PtGtGrλ

2σ

(4π)3R2
1R

2
2Ls

, (16)

where Pr is the received signal power, Pt is the transmission
power, Gt is the transmitter antenna gain, Gr is the receiver
antenna gain, σ is the radar cross section (RCS) (sum of |σr|2),
R1 is the distance from the transmitting antenna to the target,
R2 is the distance from the target to the receiving antenna,
and Ls is the system loss factor.

The SNR of the received signal (3) is

SNRs =
PtGtGrλ

2σ

(4π)3R2
1R

2
2k0TBFLs

, (17)

where k0 is Boltzmann’s constant, T is the nominal scene
noise temperature, F is the receiver noise factor, and B is
the signal bandwidth. The SNRs is usually small due to the
weak echo signal. The satellite receiver relies on a high enough
correlation gain K to conduct the successful demodulation.

Furthermore, we can exploit both the correlation gain and
sensor data combining gain to enhance pixel SNR.

Proposition 3 Under some mild statistical assumptions,
when constructing a 2D image with discretization step sizes
∆x and ∆y using M data samples, the pixel SNR is

SNRp = KM∆x∆ySNRs (18)

Proof: For communication signals with normalized pulse
waveform, the correlation gain is

∫
t
|p̂(t)|2dt = K, which can

be easily seen from (5). In (7), the power of the signal part
is increased by K2 while that of the noise part is increased
by K. Comparing (7) and (17), it can be readily seen that
the SNR of the data sample sr′ is KSNRs, which is also the
SNR of the elements of y in (10). The gain of the sensor data
combiner can be estimated based on (13). Consider the pixel
x̂i (i.e., the ith element of x̂). It is the linear combination of
all the satellite data samples through

x̂i = hH
i y = hH

i Hx+ hH
i v (19)



where hi is the ith column of H and has dimension M × 1.
From (11), we can see that all the elements of hi and H
are complex exponential in the form of ej2πd/λ where d is
the propagation distance. It is reasonable to assume that the
phases 2πd/λ are independent, identically distributed random
variables with uniform distribution in [0, 2π]. When M ≫ N ,
we have hH

i Hi = [0, · · · , 0,M, 0, · · · , 0] almost surely, where
M is the ith element and is the only non-zero element.
Comparing x̂i over sr′ , the signal part has a power gain
M2∆x∆y, while the noise part has a power gain of M , which
leads to the pixel SNR (18). □

From (18), we can see that we can use a longer sensing
signal (larger K) and collect more data samples (larger M )
to boost pixel SNR. SAR imaging community often uses the
Noise Equivalent Sigma Zero (NESZ) to describe imaging
quality, which in our case is just NESZ = σ/SNRp.

IV. SIMULATION AND EXPERIMENT

In this section, first, we use simulations to verify the
new imaging algorithm and compare it with conventional
SAR imaging. Then, since satellite data are not available,
we use practically measured millimeter wave radar data to
demonstrate the new imaging algorithm.

A. Satellite Imaging Simulation

For simulations, we used the SpaceX Starlink satellite
constellation data obtained from Starlink’s two-line element
(TLE) file https://celestrak.org to get the orbital information
of all the satellites. The TLE file of Oct. 21, 2022, consisted
of 3195 Starlink satellites. We simulated a target located at
the coordinates of Binghamton, NY. With an elevation angle
θ = 30◦, we had 555 valid satellites. Their distance to the
target was around R = 462 km. This means we had an
effective radar aperture of 1600 × 1600 km2, i.e. D = 1600
km. The theoretical resolution is thus ∆X = ∆Y = 0.0037
meters according to (14) or (15).

We applied the typical Starlink signal parameters [9]:
Carrier frequency fc = 11.7 GHz (λ = 2.6 centimeter),
bandwidth B = 250 MHz, antenna gain Gt = Gr = 40
dB, receiver noise factor F = 5 dB, system loss Ls = 5
dB, transmit power Pt = 67 dBm. Since we considered the
average SNR, we let R1 = R2 = R. Assuming σ = 100
square meters, we had Pr = −133 dBm according to (16),
higher than the typical satellite receiver’s sensitivity of −135
dBm, which means the receiver could detect the echo correctly.

From (17), we had SNRs = −18 dB, which was too small.
With K = 104, we had a correlation gain of 40 dB to boost
SNRs to 22 dB, which then had sufficient margin to tolerate
even any extra severe weather-related path loss. Furthermore,
assuming M = 105, from (18) we had SNRp = 23 dB under
pixel discretization stepsizes ∆x = ∆y = .0037 meters, which
is high enough for imaging.

We used MATLAB radar, phased array, and satellite tool-
boxes to simulate signal propagation. We created a target
consisting of 4 points on the inner circle of radius 0.02 meters
and 8 points on the outer circle of radius 0.05 meters, as shown

(a) (b)

(c) (d)
Fig. 3. (a): True target with 12 white dots. (b)-(d): Images reconstructed by
the proposed algorithm using 12, 96, and 384 satellites, respectively.

in Fig. IV-A(a). We simulated FMCW, DVB-S2X, and 5G
waveforms as satellite signals. For 5G, we used only the cell
searching signal with K = 2× 104 symbols.

Fig. IV-A(b)-(d) shows the reconstructed images using the
5G waveform. The imaging qualities were also compared
in Table I in terms of peak-signal-to-noise ratio (PSNR),
structural similarity method (SSIM) [16], and mean square
error (MSE) between the reconstructed image and the true
image. The conventional SAR did not give any meaningful
image because its resolution was too low. In contrast, the
proposed algorithm could give clear target images in all the
configurations listed in the table, even with as less as 12
satellites.

Next, we used simulations to evaluate the robustness of the
method to inaccurate satellite position and phase incoherence
among satellites. We found that random errors equivalent to
a 1-centimeter standard deviation of satellite position errors
reduced imaging PSNR by about 2.5 dB. Error deviation of
1 millimeter led to negligible degradation, but a 0.1-meter
deviation made images unrecognizable. Note that satellite
position accuracy is practically at the centimeter level (see
https://igs.org) and phase incoherence compensation is a rou-
tine technique in existing SAR.

Therefore, the proposed method can successfully provide
high-resolution images at sub-centimeter resolution even when
only a small set of satellites are used and when there are
various positioning and phase inaccuracies.

B. Real Measured Data Experiment

In this experiment, we resorted to the real measured
millimeter-wave imaging data published in [14] to demonstrate



TABLE I
COMPARISON OF IMAGING QUALITY AND THEORETICAL IMAGING

RESOLUTION. SAR (1): CONVENTIONAL SAR USING 1 SATELLITE. ALL
OTHERS: PROPOSED ALGORITHMS WITH VARIOUS WAVEFORMS AND

NUMBERS OF SATELLITES USED.

Algorithm Res. (m) PSNR(dB) SSIM MSE
SAR (1) 0.85 8.6805 0.0081 0.1355
5G(384) 0.0037 15.1216 0.0494 0.0307
5G(192) 0.0037 14.9713 0.0478 0.0318
5G(96) 0.0037 13.4933 0.0371 0.0447
5G(48) 0.0037 12.6132 0.0354 0.0548
5G(24) 0.0037 12.8188 0.0366 0.0523
5G(12) 0.0037 11.3776 0.0147 0.0728

DVB(384) 0.0037 14.9370 0.0397 0.0323
DVB(192) 0.0037 14.8166 0.0350 0.0330
DVB(96) 0.0037 14.1155 0.0285 0.0388
DVB(48) 0.0037 13.9949 0.0308 0.0399
DVB(24) 0.0037 12.8442 0.0221 0.0519
DVB(12) 0.0037 11.2367 0.0071 0.0752

FMCW(384) 0.0037 15.2110 0.0419 0.0312
FMCW(192) 0.0037 15.0548 0.0378 0.0301
FMCW(96) 0.0037 14.6919 0.0355 0.0341
FMCW(48) 0.0037 13.4799 0.0225 0.0449
FMCW(24) 0.0037 12.9010 0.0207 0.0513
FMCW(12) 0.0037 12.2147 0.0182 0.0601

the effectiveness of our imaging algorithm. Specifically, to
emulate the straight trajectories of a few satellites, we used
the data along some straight lines only. Because the total data
amount was very small in this data set, we had to use a lot
of straight lines. Results in Fig. 4 show that using a portion
of the data on straight-line trajectories could reconstruct the
image successfully. The imaging reconstruction quality was
quantitatively compared in Table. II. We can see that the
imaging quality reduced gracefully with the number of straight
lines or the percentage of data used.

Fig. 4. Millimeter wave radar data reconstructed images. Left: use all the
data. Right: use 28% data located on 75 straight lines.

V. CONCLUSIONS

There has been a great interest in deploying large-scale
LEO satellite constellations for global communications, but
there is not sufficient attention given to their capability of
sensing and imaging. This paper demonstrates that using a few
LEO satellites can generate ground images with super high
resolution of sub centimeters, a mission almost impossible
with existing satellite SAR imaging. This paper uncovers
the great potential of integrated communication and sensing
research in LEO satellite constellations.

TABLE II
IMAGING QUALITY REDUCES GRACEFULLY WITH THE REDUCTION OF THE

NUMBER OF STRAIGHT LINES.

Lines(Data Percent) PSNR (dB) SSIM MSE
All (100%) 27.1 0.83 -
150 (51%) 26.0612 0.6885 0.0025
100 (34%) 20.7141 0.4907 0.0085
75 (28%) 21.0266 0.4674 0.0079
50 (21%) 18.9880 0.3608 0.0126
30 (11%) 13.8393 0.1735 0.0413
20 (6%) 13.6054 0.1948 0.0436
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