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Abstract—The recent advancements in the Internet of Video
Things (IoVT) and Edge-Fog-Cloud Computing paradigm make
smart public safety surveillance (SPSS) a realistic solution for
an effective public safety service in smart cities. Typically, a
fully functional SPSS system requires multiple sensory inputs for
situational awareness (SAW). As an essential component in the
context of highly complex, dynamic, and heterogeneous smart
city operations, SPSS is expected to be environment-resilient.
Personal safety is among the top concerns of the residents in
smart cities, and correspondingly pedestrian detectors are critical.
Contemporary pedestrian detectors use optical cameras, whose
accuracy is diminished in low-light environments, and they are
rendered ineffective when obstacles block the direct line of sight to
the camera. Complementary imaging sensors such as infrared have
shown promise. This paper presents a full-spectrum, environment-
resilient surveillance platform as an ultimate solution, which con-
sists of multiple imaging units to cover a wide sensing spectrum.
The initial hybrid pedestrian detection (HYPE) scheme is based
on the fusion of data obtained from an IoVT network equipped
with optical and thermal cameras. We demonstrate that training
the YOLOv5 object detection model on a dataset of infrared
images improves its accuracy in the detection of humans present
in thermal surveillance images. A 41% decrease in objectness loss
is achieved after transfer learning is performed.

Index Terms—Smart Public Safety, Human Object Detection,
Hybrid Thermal-Optical Cameras, Deep Learning, Data Fusion.

I. INTRODUCTION

The Edge-Fog-Cloud Computing paradigm and Internet of
Things (IoT) technology make the concept of Smart Cities
become realistic, greatly improving the citizen’s quality of
life for a sustainable urban environment [18], [42]. Public
safety service is among the most popular areas in smart city
development as the safety and security of either personnel or
properties are fundamental needs for an enjoyable life [16],
[44]. The proliferation of Internet of Video Things (IoVT)
affords an effective technological measure that makes smart
public safety surveillance (SPSS) a practical solution [13], [17].
Typically, a fully functional SPSS system requires multiple
sensory inputs for situational awareness (SAW) [8], specifically
for safety and security-related tasks like object-of-interest de-
tection, identification, and tracking [15], [32], [33].

Besides public safety surveillance, there is also an increasing
demand for effective, efficient, and reliable surveillance solu-
tions to maintain SAW in many mission-critical delay-sensitive
tasks, such as battlefield monitoring, disaster monitoring and
recovery, etc. [2], [27]. Nowadays, the optical video surveillance
system is the most popular approach [12], [22]. However, it
suffers from changing environmental conditions and monitoring
at night, in foggy weather, on rainy days, or with wall blockages

is a challenging task [39], [41]. As an essential component
in the context of highly complex, dynamic, and heterogeneous
smart city operations, SPSS is expected to be environmentally
resilient and adaptive [14].

Personal safety is of the highest priority to the residents in
smart cities, and correspondingly the capability of accurately
detecting and identifying people is indispensable for safety
surveillance. While it is recognized as an important compo-
nent of SPSS systems, presently most contemporary pedestrian
detectors use optical cameras which have a diminished accuracy
in low-light environments, and they are rendered ineffective
when obstacles block the direct line of sight to the camera [15].
Therefore, taking advantage of multiple sensors and leveraging
modern information fusion technology are considered to address
the constraints of optical cameras [5], [11], [47]. One of the
candidates is thermal cameras, which are unaffected by such
conditions and could be complementary.

The FUll-Spectrum, Environment-Resilient Surveillance
(FUSERS) framework consists of multiple imaging units to
cover a wide sensing spectrum, including 5G-mmWave imaging
technology, sub-6 GHz RF communication, infrared thermal
imaging units, and popular optical surveillance [33]. To sup-
port full-spectrum ubiquitous surveillance studies, the FUSERS
platform is expected to address the challenges that today’s
optical video surveillance systems is facing. The fusion of sub-
6 GHz 5G signals, mmWave 5G signals and optical images
will provide continuous tracking in all environments and thus
realize environmentally resilient surveillance.

This paper introduces the FUSERS platform with a
conceptual-level illustration of the design rationale and archi-
tecture. Then, as a case study and preliminary design, a hybrid
pedestrian detection (HYPE) scheme is presented based on the
fusion of data obtained from an IoVT network consisting of
optical and thermal cameras. Specifically, the HYPE system
is facilitated by a multi-spectral pedestrian detector which
provides accurate data from both the visible and infrared regions
of the electromagnetic spectrum. In normal operations with
sufficient light or good vision without obstacles, videos from
the optical image sensors are applied. In low-light situations or
environments with obstacles, a shift from the visible spectrum
to the infrared spectrum is triggered. Both RGB and thermal
datasets were selected to train the You Only Look Once
(YOLO) model [36] used in the multi-spectral detector. The
experimental results demonstrate that training the YOLOv5
object detection model on a dataset of infrared images improves
its accuracy in the detection of human objects present in
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thermal surveillance images. The main contributions of this
paper include:

• A FUll-Spectrum, Environment-Resilient Surveillance
(FUSERS) framework is introduced, which provides a
high-level information fusion (HLIF) smart surveillance
system [6] that is capable of meeting the diverse demands
from various delay-sensitive, mission-critical applications;

• A preliminary hybrid pedestrian detection (HYPE) scheme
is designed that integrates optical cameras and thermal
cameras to investigate the effectiveness of a hybrid surveil-
lance system; and

• A proof-of-concept prototype of HYPE is constructed
and an extensive experimental study is conducted that
validates the design rationale and the experimental results
are encouraging.

The remainder of this paper is organized as follows. Sec-
tion II reviews background knowledge of object detection in the
visible and infrared regions. Section III introduces the rationale
and basic design of the full spectrum, environment-resilient
surveillance platform, and Section IV presents the architecture
of our HYPE scheme including key components and features.
The prototype implementation and evaluation are discussed
in Section V. Finally, Section VI concludes this paper with
ongoing efforts and future directions.

II. BACKGROUND AND RELATED WORK

A. Object Detection in the Visible Region

Object detection in the visible region includes a century
of development including Neural Networks [38] and Support
Vector Machines (SVM) [35] to detect human faces. For
example, local image features were suggested to develop an
object recognition system [30]. The following decade witnessed
significant progress in exploiting local image features for object
recognition rather than detection, which demands a higher level
of performance. In more recent years, the evolution of Deep
Neural Networks (DNN), particularly Convolutional Neural
Networks (CNN), has spurred the development of state-of-the-
art object detection [31], [34].

Krizhevsky and colleagues proposed a Deep CNN-based
approach to image classification using the ImageNet dataset and
achieved a record low error rate of 15.7% in 2012 [26]. This
led to the Region based CNN method [21] in 2014 that offered
a record 30% performance improvement over the previous
best detector. Large RGB datasets such as Imagenet and MS
COCO [28] were developed, which allowed researchers to have
a diverse training pool that improved the accuracy of object
detection and gave them a broad span of classification.

In 2016, the You Look Only Once (YOLO) object detection
network was proposed [36]. A novel approach is employed in
which object detection is framed as a regression problem instead
of using classifiers for detection. The real-time processing
capabilities made YOLO the most popular and widely adopted
object detector of its time. The YOLO scheme was further
improved upon in 2017, YOLO9000, which worked on 9000
object classes in real-time [37]. It was then followed by several
other versions and variations, each having incremental accuracy
and performance.

YOLOv5 is a state-of-the-art object detector belonging to
the YOLO family. It improves upon its predecessors in terms
of performance by using features such as panoptic segmenta-
tion and object tracking. Moreover, it has various lightweight
versions that are suitable for IoT environments like autonomous
vehicles, surveillance, and imaging. Our HYPE scheme adopts
the YOLOv5 model because of the specific designs for fast
computations in resource-strained environments. However, it is
worth noting that all of the object detectors mentioned above
are restricted to RGB data and show dips in performance when
being applied in the Infrared region.

B. Object Detection in the Infrared Region

Infrared object detection focuses on establishing distinctions
among the objects, their background, and their noises. Since
thermal images typically lack the high resolution of RGB im-
ages, they are corrupted with noises that need to be suppressed.
In addition to noises, the background also needs suppression
for the object to be identified accurately [7]. IR automatic
target recognition (ATR) techniques include temporal noise
suppression [29] and denoising using Shearlet Transform and
histogram thresholding [3]. More recent efforts led to advanced
approaches such as Haar cascade classifier-based detection [40],
multiscale CNNs [45], and lightweight CNNs [19] used for
medical imaging, body temperature scanners, and autonomous
cars. While all these methods were effective to an extent, they
suffered from high complexity and are not affordable to be
deployed in IoT environments with low resource availability.
Moreover, thermal datasets are not as readily available as RGB
datasets, which makes the rate of development slow.

III. FULL-SPECTRUM ENVIRONMENT-RESILIENT
SURVEILLANCE PLATFORM

Nowadays, the most popular optical video surveillance sys-
tems suffer from changing environmental conditions [39], [41].
Also, they are unable to detect weapons concealed under
clothes, or people behind walls. The coverage is limited to
important areas only due to both cost and privacy concerns.
Theoretical models have been developed such as the National
Imagery Interpretability Rating Scales (NIIRS) standard [4],
[24]; however, these models do not include attributes of data
trust (e.g., machine learning), security (e.g., blockchain), and
bandwidth (e.g., 5G).

Due to its ubiquitous coverage [23], [25], the fifth generation
and beyond cellular system (5G/BCS) can play an important
role in SAW well beyond simply providing connectivity support
for existing surveillance systems. As 5G signal bandwidth
becomes high and the network becomes dense, the 5G commu-
nication signals potentially can be used directly for surveillance
sensing and imaging purpose. Especially, the 5G millimeter-
wave (mmWave) signals have enough bandwidth to produce
high-resolution surveillance images similar to the Terahertz
(THz) or X-ray-based imaging systems used in airports [1].
Existing THz or X-ray-based systems are either too expensive
or physically too big for ubiquitous deployment. Conventional
surveillance systems, such as optical cameras and radars,
provide coverage over important areas only. In contrast, 5G
coverage is ubiquitous and 5G nodes can be lightweight and
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Fig. 1. A conceptual illustration of our FUSERS platform in smart cities.

low-cost. 5G network densification will make 5G nodes close
to targets. As a result, 5G signals may provide a full-spectrum
ubiquitous sensing mechanism to compensate for the shortness
of conventional means.

The FUll-Spectrum, Environment-Resilient Surveillance
(FUSERS) platform consists of multiple imaging units to cover
a wide sensing spectrum, including 5G-mmWave imaging tech-
nology, sub-6 GHz RF communication, infrared thermal imag-
ing units, and popular optical surveillance [33]. Meanwhile, the
use of many high-quality surveillance devices also introduces
the challenges of big data. It is non-trivial for the dynamic
data-driven adaptive computations to effectively process the
exponentially increasing data volume for advanced surveillance
tasks such as simultaneous target identification, tracking, and
behavior analysis/prediction [10]. In addition, the ubiquitously
deployed sensors make it not practical to depend on a central
cloud facility. Intelligence at the edge is required for instant
suspicious object identification and early alert generation. Fur-
thermore, context understanding, which is critical for situation
awareness, is established based on coordination between users
and devices [9], [43]. Therefore, a human-in-the-loop, live-
video computing architecture is compulsory.

Figure 1 is a conceptual level illustration of our FUSER
system, which integrates 5G-mmWave, Optical, and Sub-6
GHz RF together and architecturally consists of a cluster of
heterogeneous surveillance and computing devices, from THz
transceivers to optic video to RF. They are integrated as edge
computing cells to process the collected data on-site. The edge
computing paradigm relieves the burden on communication
networks and enables real-time data processing and instant on-
site or near-site decision-making. These advanced features make
FUSER platform the first of its kind.

Environment resilient SPSS systems also need multiple types
of sensing units to function at its full potential. As shown in
Fig. 1, FUSERS is a framework in which information from the
visible, infrared, microwave (specifically mmWave) and radio
wave regions is utilized concurrently to make decisions based
on a more comprehensive view of the smart city environment.
Each area of the spectrum corresponds to particular types of

Fig. 2. HYPE System Overview.

IoT devices present in a smart city. For instance, thermal
detectors would work better in conditions of low light, or
obstructions blocking the direct line of sight to a security
camera. A FUSERS-enabled security system will be able to
correctly detect pedestrians in both thermal and RGB video
streams captured by infrared and optical cameras respectively.
It will also transmit information such as number of objects,
coordinate information, and timestamps to the on-site or near-
site decision-making unit. Better data provided to the processor
will ultimately lead to better decisions. The combination of
data from multiple bands to fill up the blind spots and make
well informed decisions is what makes the FUSERS platform
environment resilient.

IV. HYPE SYSTEM ARCHITECTURE

As the initial step toward a complete FUSERS system design,
the system integrates two different imaging sensors, the normal
optical cameras and infrared thermal cameras in an IoVT
surveillance network. Figure 2 presents the hybrid pedestrian
detection (HYPE) architecture and the working flow of the
HYPE-enabled SPSS system. The data processing block of the
system is the decision-making unit. Improving the quality of
data provided to HYPE will naturally bring about an elevation
in performance.

HYPE leverages a MUlti-Spectral Pedestrian (MUSP) detec-
tor that provides accurate data from both the visible and infrared
regions of the electromagnetic spectrum. The MUSP detector
receives two video streams from optical and thermal cameras
respectively. The cameras are installed to observe a certain
region of surveillance; typically a street intersection, or a high-
security alley. The MUSP detector extracts various features such
as the number of pedestrians, averaged coordinate information,
and timestamps from the video streams. The feature extraction
uses information from both regions of the spectrum. The EO
and IR features are fused and then passed on to the data
processing block for decision-making. The diversification of
data used in the decision-making process is what contributes
to the enhanced accuracy of the SPSS system.

A MUSP detector is able to perform detection in multiple
regions of the electromagnetic spectrum. The proposed MUSP
detector identifies pedestrians appearing in both RGB and ther-
mal video streams. Traditional EO/IR cameras offer the ability
for simultaneous images, co-referenced collections, and similar
operational conditions to support object detection, recognition,
classification, and identification.

The effectiveness and efficiency of the MUSP detector de-
pend on the quality of the feature fusion algorithm, which
is based on transfer learning. Due to the much less thermal
imagery available than the abundant RGB dataset in public
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domains, there are fewer state-of-the-art thermal object detec-
tors as compared to their RGB counterparts. Moreover, the
lightweight nature of recent RGB object detectors, makes them
ideal for IoT environments like SPSS systems, where computa-
tional resources are constrained. Therefore, it is reasonable to
consider transfer learning technology to train an RGB detector
on thermal images to produce a multi-spectral detector.

The base model adopted in this paper is YOLOv5, which is
one of the most recent and most accurate object detector trained
on the MS COCO dataset which is in the RGB format [28].
The YOLO version used is the YOLOv5s, a lightweight model
that is suitable for IoVT network at the edge. The model is
then trained on thermal images extracted from the FLIR dataset
[20], which contains thermal images in the grayscale format
and their respective labels in the form of txt files. Using the
labeled data enables the model to learn features that are specific
to pedestrians in both the visible and infrared regions of the
spectrum. Ultimately, the fusion of EO and IR data leads to
better accuracy of pedestrian detection in thermal streams.

V. EXPERIMENTAL RESULTS

A. Dataset Description
Both RGB and thermal datasets were used to train the model

used in the MUSP detector. The YOLOv5s model was trained
on the COCO dataset containing 330,000 RGB images, 91
classes, and 2.5 million labels. This comprehensive dataset al-
lows the model to perform widespread classification of objects,
making it an ideal candidate for transfer learning applications.
In this work, transfer learning is done using the FLIR Thermal
Images dataset [46]. It consists of over 20,000 thermal and
RGB images captured from the dashboard camera of a car
driving around the streets of a city in various light conditions.
As such, some images contain pedestrians while others do not.
The bounding box regions marking the pedestrians are specified
in the annotations, which were processed to generate labels. The
labels were in the form of individual ‘.txt’ files corresponding
to each image as per the YOLOv5 format. 80% of the images
were used for training, 15% for validation, and 5% were used
for testing.

B. Model Training
The base YOLOv5 model was trained on 20,000 thermal

images with their corresponding labels in the YOLOv5 format.
All the layers of the model were trained and none of them were
frozen, allowing for better accuracy for pedestrian detection in
the thermal region. The model was trained for a total of 35
epochs in 2 phases of 25 and 10. As shown in Figure. 3, the
bounding box loss (measure of bounding box accuracy) and
the objectness loss (measure of prediction confidence) during
training and validation, decreased over the first 25 epochs and
continued to reduce marginally over the last 10 iterations. The
results from Fig. 3 indicate that 25 is a sufficient number
of epochs needed to achieve reasonable results. Since the
training and validation images are all thermal in nature, it is
assumed that the system would support detecting humans in
the thermal region. Therefore, it is fair to infer that the final
model, obtained through transfer learning, that it is better tuned
to detect pedestrians in thermal images when compared to the
base model.

C. Detection Accuracy

The detection accuracy is measured by the objectness loss
and is further understood by analyzing the testing dataset
results. The testing dataset consists of 1000 images selected
from the FLIR dataset, along with their respective labels.
Both the base model and the trained model were evaluated
on the same testing dataset to maintain consistency. Figure 4
depicts some of the results obtained. The first row represents
the detection results of the base model while the second row
contains those of the trained model. The first column presents
multiple pedestrians farther in the frame which was undetected
by the base model but was correctly detected by the trained
model. The second column shows that, unlike the base model,
the trained model is also able to detect cyclists in addition to
pedestrians on foot. The third column contains pedestrians near
and farther in the frame.

While the base model successfully detects closer pedestrians,
it is unable to detect faraway pedestrians. The trained model
has no such issue and detects all the pedestrians irrespective of
their proximity to the camera. The last column is an example
of a false positive, where the base model incorrectly classifies
a tree top as a person, while the trained model classifies it as a
true negative. As such, it is evident that the fusion of features
learned through transfer learning enables the trained model to
be more accurate in identifying pedestrians in thermal images
and videos.

D. Precision and Recall

Precision is a measure of the ratio of true positives to the
total number of positives, including false positives. Figure 5
shows that the precision after 25 epochs increases to 0.891 and
has a marginal decrease to 0.88 after 10 more epochs. This is
a reasonable increase from the original precision of just under
0.7.

The ground truth coordinates for the bounding boxes are
provided in the labels file for each image as part of the training
dataset. The predicted coordinates form the predicted bounding
box. Intersection over Union (IoU) is the measure of overlap
between the predicted and ground truth bounding boxes. The
Average Precision (AP) is the precision for all data points
having an IoU greater than a certain threshold. The Mean
Average Precision (mAP) is the AP across all classes. In this
case the number of classes is limited to one. Therefore the AP
will be the same as the mAP. The mAP at an IoU threshold of
0.5 after 25 epochs was 0.893, and settled at 0.88 after 10 more
epochs as shown in Figure. 5. This is a considerable increase
from the mAP (at an IoU=0.5) of 0.625 before training.

Recall is defined as the number of true positives divided by
the sum of true positives and false negatives. Recall essentially
measures the correctness of the predictions. Figure 3 shows that
the recall after 25 epochs was 0.8 and fell to 0.79 after 10 more
epochs. This is a substantial improvement from a recall of 0.55
before training.

The Precision Recall (PR) curve depicts the tradeoff between
the two measures for a given threshold of IoU. Figure 6 shows
a comparison between the PR curves at an IoU of 0.5 for both
the base and trained models. It is evident from the graphs, that
the trained model has a higher PR score as compared to the
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Fig. 3. Objectness and Box Loss after 25 and 35 epochs.

Fig. 4. Accuracy comparison of base and trained models.

base model. The area under the PR curve for the trained model
is also larger, indicating a higher AP.

E. Discussions

It is evident from the experimental results that transfer learn-
ing enabled the model to learn features belonging to both the
RGB and the thermal datasets. There is an improvement of 41%

in the objectness loss and a 43% improvement in the bounding
box loss. This is attributed to a reduction in the number false
negatives and an increase in the number of true positives,
which in turn offer reliability for surveillance operations. The
ability of the detector to detect distant pedestrians is particularly
encouraging from the SPSS point of view. The large and
comprehensive dataset makes the training data diverse enough
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Fig. 5. Precision and Recall after 25 and 35 epochs.

Fig. 6. Precision-Recall curves.

for real world applications. A significant improvement is not
observed after 25 epochs. More clarity is needed on the ideal
number of epochs relative to the size of the dataset.

VI. CONCLUSIONS AND ON-GOING EFFORT

The paper introduces the full-spectrum, environmentally re-
silient surveillance platform, FUSERS, which integrates the 5G
millimeter-wave-imaging technology with our existing sub-6
GHz RF communication testbed and optical surveillance testbed
iSENSE [33]. To support full-spectrum ubiquitous surveillance
studies, the platform is able to address the challenges that
today’s optical video surveillance systems are facing, such as
interference from ever-changing environmental factors, includ-
ing lighting conditions, weather changes, wall blockages, etc.
The fusion of sub-6 GHz 5G signals, mmWave 5G signals and
optical images will provide continuous tracking in all environ-
ments and thus realize environmentally resilient surveillance.

As an initial step, the HYPE scheme for SPSS is used
as a case study. The analysis of the multi-spectral detector
relative to the YOLOv5 model demonstrates its feasibility. The
reasonable performance of the model in the infrared spectrum
is an advantage that can be leveraged when the region of
surveillance is under low light conditions. This also underscores
the importance of using data from multiple sources while devel-
oping AI solutions aimed at supporting critical infrastructure.
This small success verified that training the YOLOv5 object
detection model on a dataset of infrared images improves
its accuracy in the detection of humans present in thermal
surveillance images. It is also very encouraging that there is
a 41% decrease in objectness loss after transfer learning is
performed.
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