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1 Introduction

Since Kodak engineer Steven Sasson took the first digital image back in 1975, the world has
witnessed a technological revolution that has fundamentally changed the way how images are
created, consumed and perceived. Successors of Sasson’s prototype—a colossus of 3.6 kilogram,
which operated at a resolution of 0.01 megapixels [150]—have meanwhile matured to become
omnipresent companions in our everyday life. Nowadays, easy-to-use digital imaging devices
and inexpensive storage space make the acquisition of high-quality digital images a natural
form of human perception of and interaction with the real world.

At the same time, the very nature of digital data puts into question many of the positive aspects
that we usually associate with digital images. Digital data can be manipulated easily. Powerful
editing software allows even relatively unexperienced users to conveniently process digital
images in innumerable ways. While image manipulations are in general not a phenomenon
exclusive to the digital world [20], critics have expressed concerns that it has never been so
easy to alter content and meaning of a picture—often in such a perfection that it is impossible
to visually distinguish the forgery from authentic photographs. The constantly growing number
of uncovered digital image manipulations [58] signifies that the overwhelming success of
digital imaging harms the trustworthiness of pictures, particularly in situations where society
bases important decisions on them: in court (where photographs act as pieces of evidence),
in science (where photographs provide empirical proofs), and at the ballot box (where press
photographs shape public opinion).

This discrepancy between the ever-increasing relevance of digital images on the one hand and
doubts regarding their susceptibility to manipulations on the other hand more than ever calls for
approaches to systematically assess the trustworthiness of images. It also points to yet another
ambivalence surrounding digital imagery. Not only can digital images be easily manipulated,
but also give they rise to powerful computational analysis methods, which help to overcome
limitations of human perception and cognition in detecting such manipulations. While the
human visual system excels in grasping semantic details of a depicted scene, computational
methods are typically superior at unveiling even subtlest traces at the ‘syntactical’ level, i. e., by
examining the digital image data itself or digital data that is stored with the image [59, 26].

Farid [54] and Lukáš [151], around the turn of the millennium, first reported that post-
processing leaves characteristic traces in the resulting image.1 Around the same time, Heerich
[97] and Kurosawa et al. [137] made similar endeavors to investigate inherent traces of
the device that acquired the digital image. These seminal works have set the stage for
the field of digital image forensics. Since then they have stimulated scholars from different
research communities, such as multimedia security, computer forensics, imaging, and signal
processing, to develop algorithms that assist the detection of manipulations and allow to infer
the acquisition device of arbitrary digital images. The promise of digital image forensics is

1 Farid’s [54] work deals with audio signals but was later extended to digital images by Ng et al. [176, 179].
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1 Introduction

to restore some of the lost trustworthiness of digital images. Coverage in flagship scientific
journals [163], significant interest of the media as well as first practical applications in law
enforcement all indicate the high relevance of digital image forensics in a digital society.
Overall, we can expect this emerging discipline to play a more and more central role in the
practical assessment of image trustworthiness in a broad range of real life situations.

Notation

Throughout this text, random variables defined over the domain X are denoted by ‘plain’
calligraphic letters, X . Sets are printed in ‘ornate’ calligraphic letters, X . Some special sets
may also appear in a double-lined notation, e. g., R and N are the sets of all real and natural
numbers, respectively. Scalars and realizations of random variables are denoted by roman
lowercase or uppercase symbols, x or X . Bold symbols are reserved for vectors and matrices,
respectively. A vector x ∈ X N holds N elements x i ∈ X , i. e., x = (x1, . . . , xN ). Likewise, an
M ×N matrix X consists of MN elements X i, j ∈ X with indices (i, j) ∈ {1, . . . , M}×{1, . . . , N}.
A vector of random variables is denoted as X = (X1, . . . ,XN ). When necessary we make the
dimension of a matrix explicit by writing X (M×N). More general, the superscript notation (·) is
used to make arbitrary characteristics of a vector or matrix explicit, depending on the context.
Symbols M and N are reserved for dimensions of vectors and matrices, and similarly, integers
K and L may denote upper limits of some sequence of indices. Single subscripts to boldface
symbols (e. g., x 1 and x 2 or X1 and X2) distinguish different realizations of random vectors or
matrices. Functions are printed in monospaced sans serif, for example, E(x) or process(x ). If
not stated otherwise, we assume grayscale images x ∈ X with bit depth `, i. e, a digital image
with M × N pixels is written as x = (x1, . . . , xMN ), x i ∈ X = [0,2`− 1], whereas X is the set
of all digital images.
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2 Principles of Digital Image Forensics

Digital image forensics aims at restoring some of the lost trustworthiness of digital images and
revolves around the following two fundamental question:

. Where is the image coming from?

. (How) Has the image been processed after acquisition?

To answer these and related questions, digital image forensics exploits the fact that charac-
teristics of digital images depend not only on the depicted scene but also on the particular
way the image was acquired and processed. This allows to infer device(s) and post-processing
steps involved in the image generation process and thereby to judge about the trustworthiness
of digital images.

2.1 Forensic Analysis of Digital Images

To familiarize with the principal ideas of digital image forensics it is necessary to have at
least a rough working definition of the key terms involved. Hence, we open this chapter
with a short account of how different image generation processes (Section 2.1.1) may affect
the trustworthiness (Section 2.1.2) of digital images. We then detail our notion of digital
image forensics (Section 2.1.3), which is based on the examination of image characteristics and
identifying traces (Section 2.1.4) of the respective image generation process, and finally discuss
the role of counter-forensics (Section 2.1.5) in this setting.

2.1.1 Formation of Digital Images

A digital image is the result of a complex image generation process that projects a continuous
scene to a discrete representation. A scene is part of the real world and can refer to any
real natural phenomena or describe arbitrary imaginary phenomena that result from human
creativity [18, p. 81]. As a result, the image conveys information about the depicted scene,
which—by (human) interpretation—translates to a particular semantic meaning. The image
generation process itself may comprise up to three principal stages, depending on its concrete
instantiation, cf. Figure 2.1:

. The image acquisition phase is the interface between the real and the digital world, where
a scene is projected to a discrete representation. Such projections can take place via an
image acquisition device that is equipped with a sensor (e. g., a digital camera), or it can be
completely software-driven (as in the case of computer-generated images).

. In the processing phase, the acquired image is altered (or parts thereof), leading to a processed
version. At this stage, we distinguish between image processing and image manipulation.
While processing in general refers to any change of the initial image, a manipulation is
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2 Principles of Digital Image Forensics

real world digital world

acquisition processing

output
scene

acquired
image

resulting
digital image

Figure 2.1: A digital image generation process projects parts of the real world (the scene) to a digital
representation (the digital image). The acquired image may be post-processed or undergo a re-
digitization procedure.

more specific and implies the change of the image’s semantic meaning. In other words, a
manipulation impairs the authenticity of a digital image.

. Finally, the digital image may undergo a re-digitization procedure, where the image is
recaptured from the result of an output device (for instance photographs of computer
displays or scans of printouts). We note that re-digitization may be likewise understood as a
special form of post-processing: the resulting digital image is a modified version of the image
fed into the output device. We will make us of either perspective, depending on whether the
explicit or implicit view is more convenient in a particular situation.

Each of the above steps may be further subdivided into several independent components. These
components are instantiated specifically to particular (classes of) generation processes, where
a class subsumes a number of generation processes that share common settings. Different
digital cameras models, for instance, may differ in their system of lenses, the type of sensor, or
the demosaicing algorithm. Post-processing may comprise resizing or contrast enhancement
operations, or combinations thereof.

2.1.2 Trustworthiness of Digital Images

Whenever digital images are understood as a means to convey information, it is important to
ensure the trustworthiness of this very information. This means in particular that the image
has to be authentic, i. e., the image has not been manipulated and the depicted scene is a
valid representation of the real world. Often however, it is not only the depicted scene that is
considered to convey information, but also the image’s origin and the mere circumstances that
led to the respective image.

Example 1 | Trustworthiness. Consider for instance a photograph that is offered to a reputable
newspaper, showing a popular political leader handing over a secret document to some dubious
lobbyists. The responsible editor may or may not decide to front-page not only depending
on whether the image has been tampered with. However, this decision may also depend on
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2.1 Forensic Analysis of Digital Images

whether the image was taken by a renowned and trusted journalist or was leaked to that
journalist by a person from the orbit of an opposing party competing for votes in an upcoming
election.

Hence, judging about the trustworthiness of a digital image means to infer the history of that
particular image. While the above example illustrated that, in general, the question of
trustworthiness is connected to the question who operated the devices involved in the image
generation process, we will restrict our considerations on the origin of an image to the
determination of the actual devices: The image itself cannot reveal the identity of the device
operator.2 Rather, we will understand available information about the involved devices as
indications of image origin, which can be further combined with side-information from other
sources.

In other words, we are first of all faced with the question what components have made up
the image generation process. Based on hypotheses on the image generation process (and
additional side-information), we will eventually come to a conclusion to which extent the
image shall be considered trustworthy, if at all. In Example 1 above, low image quality due to
strong JPEG compression artifacts may hint to a post-processing step and thus diminishes the
trustworthiness of the offered image (independent of its actual source). In a similar fashion,
the editor may put little trust in the image when she finds out that it was actually captured
with a low-cost consumer device, whereas the journalist is known to favor high-end full-frame
cameras.

2.1.3 Digital Image Forensics

The primary objective of forensic sciences is the systematic reconstruction of events as well
as identification of entities involved. The forensic analysis of digital images (or digital image
forensics) then refers to the reconstruction of the generation process of a given digital image,
where the main focus lies on inference about the image’s authenticity and origin. In a strict
sense, the term ‘forensic’ denotes the application of scientific methods to the investigation
and prosecution of a crime, i. e., outcomes of a forensic analysis may serve as probative facts
in court.3 Driven by the ubiquity of digital images, the term ‘digital image forensics’ is used
for broader contexts in the literature, with a wide range of applications also beyond the
courtroom. Although trustworthiness (and in particular authenticity) is a prerequisite for
images being introduced as pieces of evidence to the court [200, i. a.],4 we expect and demand
trustworthiness in whatever situation we (have to) rely upon an image. This is to say that
applications of digital image forensics have not only a legal but in general also a very strong
social dimension.

Throughout this text, we will therefore understand digital image forensics rather general as
any systematic attempt to assess the trustworthiness of a digital image based on its generation
process. The call for systematic approaches emphasizes the link to forensic sciences in general,

2 This is only true unless the image generation process is specifically designed to link biometric identifiers with the
resulting image [16], or the image by chance exhibits reflections of the photographer. As to the latter, we refer to
Section 5.1 of Ref. [70] for an indicative example.

3 The word has its etymologic roots in the Latin word forum, which means ‘main square’, a place where public court
hearings took place in ancient times.

4 Whether digital images are eligible for admission as pieces of evidence in court at all is, at least in Germany, still
subject to an ongoing discussion [190, 134].
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2 Principles of Digital Image Forensics

and consequently, we will refer to a subject that conducts analyses of digital images for the
purpose of digital image forensics as a forensic investigator.

2.1.4 Image Characteristics and Identifying Traces

The key to digital image forensics is the assumption that components of the image generation
process affect characteristics of the resulting image and that these image characteristics are
specific to the respective (class of) generation process(es). Both because of the very existence
of certain components and because of differences in their manufacturing and implementation,
different generation processes vary in the way how they impact the characteristics of the
resulting image. Eventually, these variations permit inference about particulars of the image
generation process and thus allow us to assess the trustworthiness of a given image.

De Rosa et al. [203] reformulate the above assumption as a two-part image decomposition.
The first part relates to properties of the scene itself and hence conveys the semantic meaning
of the original image. Parameters of the image generation process and their implications on
the resulting image determine the second part. Although this decomposition appears rather
theoretical (Because a digital image by definition only exists via a particular generation process,
it is hard to imagine an “ideal” image that is independent of this very process.), we will adopt
the idea behind this construction and henceforth distinguish between characteristics of the scene
and characteristics of the generation process, respectively.5

Figure 2.2 extends the previous Figure 2.1 and illustrates the influence of scene and generation
process characteristics in the context of digital image forensics. Red circles and black squares
indicate, in a stylized manner, that each component of the generation process may leave its very
own characteristics (here exemplarily shown for acquisition and processing stage, respectively).
Technically, the goal of the forensic investigator is to identify which (class of) generation
process(es) led to the image under analysis. It is for this reason that we speak of identifying
traces when we refer to process-specific characteristics of digital images.

Identifying traces in general possess a high inter-class similarity and a low intra-class similarity.
This means that respective characteristics are highly similar for all images of the same (class of)
generation process(es), but differ for images of different (classes of) generation processes [85].
The above identification problem is approached by comparing reference traces of known
instances of generation processes with traces found in the image under investigation. Digital
image forensics is hence a decision problem, where the forensic investigator needs to assign a
given image of unknown provenance to a known (class of) generation process(es)—or to none
of them, when no match is found.

In general, characteristics of different components are not independent of each other. Each
individual component of the image generation process can interfere with or even wipe out traces
of previous components. This means that characteristics of earlier stages are not necessarily
present in the final image anymore. Forensic investigators may assess image authenticity not
only based on the presence of identifying traces but also explicitly based on the non-existence of
(expected) traces or, more general, their inconsistency by interpreting missing identifying traces

5 However, we do not entirely follow de Rosa et al. [203], who conjecture that the second component is « a sort of
random part of the image ». While typical generation functions clearly introduce randomness to the image (e. g.,
temporal sensor noise), it is central to all practical methods in digital image forensics that some deterministic
similarities between certain instances of generation processes exist.
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output

acquisition processing

scene image under
analysis

generation process characteristicsscene characteristics

inference about

image generation process identifying traces of acquisition
and processing stage (stylized)

Figure 2.2: Characteristics of digital images divide into scene and generation process characteristics,
respectively. Digital image forensics assumes that components of the image generation process leave
identifying traces in the resulting digital image. If found in the image under analysis, these traces
allow forensic investigators to infer particulars of the generation process.

as strong indication for a post-processed image. Inconsistent here means that traces found
in the image under investigation are compatible with reference traces of different, possibly
contradictory, generation processes. In Example 1 on page 8 for instance, it may turn out
that parts of the image were cropped to hide the presence of other politicians with the goal
to change the image’s semantic meaning. This leads to an image size incompatible with the
sensor size of the camera model as specified in the accompanying Exif data.

More generally, we can distinguish between inter-characteristic and intra-characteristic inconsis-
tencies. The above mismatch between image resolution and Exif data is a typical representative
of the former type, where the analysis of different characteristics leads to contradictory conclu-
sions with respect to the image generation process. Intra-characteristic inconsistencies, on the
other hand, refer to spatial variations of one particular characteristic—possibly due to local
manipulations of certain regions of the image—that lead to inconsistent conclusions from the
analysis of traces in different parts of the image. Figure 2.3 gives an illustrating example, where
a local manipulation of the lower-right part of the image led to post-processing traces as well
as missing traces of the acquisition phase in the respective image region. This of course implies
that the corresponding characteristics can be analyzed locally, i. e., that respective identifying
traces are expected to be present (and measurable) throughout different parts of the image. The
above example illustrates that this is not a prerequisite for the existence of inter-characteristic
inconsistencies: size and metadata are characteristics of the image as a whole.
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2 Principles of Digital Image Forensics

identifying traces of acquisition
and processing stage (stylized)

Figure 2.3: Image characteristics interfere
with each other. Local image processing
may lead to inconsistent identifying traces
(here in the lower right part of the image).
See also Figure 2.2.

2.1.5 Counter-Forensics

To justify the additional trust that we place in digital images through forensics, it is important
that the limits of image forensics are known and will eventually be overcome. The invocation
of an image generation process is typically an intentional act that is carried out by a human
being for a specific reason. The resulting image is supposed to convey particular information,
either about the depicted scene (and subjects and objects therein) or the image creator itself.
As a consequence, there is little doubt that farsighted actors will do their best to influence the
result of a potential forensic analysis to a favorable outcome for themselves, i. e., to undergird
the information they want the image to convey. In the above Example 1, for instance, the
questionable source from the opposite party may want to cover up the fact that the image has
actually been manipulated and may also try to conceal the origin of the image.

This makes digital image forensics a security discipline, which needs to anticipate intelligent
counterfeiters, and which has to be measured by its resistance to countermeasures. The research
field that challenges digital forensics and systematically explores its limitations against such
counterfeiters is called counter-forensics, or anti-forensics. Both terms are used synonymously
in the literature. We prefer the former because it better reflects the pragmatic reaction to
forensics, as opposed to a normative disapproval of forensics.

In a very general setting, counter-forensics has been defined by Harris [95] as any attempt « to
compromise the availability or usefulness of evidence to the forensics process ». In the context
of digital image forensics, counter-forensics translates to the modification or replacement of
(parts of) the original image generation process so that the resulting counterfeit does not evince
sufficient identifying traces of the original generation process. Counterfeiters are however not
completely free in their choice of countermeasures, because they need to preserve the intended
semantic meaning of the image. Furthermore, it is clear that counterfeiters need to be aware
of new identifying traces, which may potentially link the counterfeit to the modified image
generation process. This sets the stage for an arms race that lets counter-forensics stand in an
equally productive relation to image forensics like cryptanalysis to cryptography. Therefore we
borrow from the cryptanalysis terminology and call a counter-forensic scheme attack (against
digital image forensics).

Besides the need to assess and improve the reliability of forensic methods, two more reasons
motivate research on counter-forensics. First, generation process characteristics indirectly
reveal information about identities of the author of a digital image or depicted subjects therein
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2.2 Variants of Digital Image Forensics

(cf. Section 2.1.2). This is not always wanted. Researchers have studied systems providing
unlinkability and anonymity in digital communications for a long time [30, 191]. All these
efforts are useless if the connection to the subject can be reestablished by forensic analysis of
the message. Hence counter-forensic techniques to suppress traces of origin in digital images
are a relevant building block for anonymous image communication, which can be useful in
practice to protect the identity of sources, e. g., in the case of legitimate whistle-blowing.

Second, some authors argue that counter-forensics, if implemented in image acquisition
devices, can be useful to hide details of the internal imaging pipeline and thus discourage
reverse engineering [213]. We mention this motivation for completeness, but remain reserved
on whether current counter-forensics is ripe enough for this purpose. Our main concern is that
counter-forensics often implies a loss of image quality. Camera manufacturers, for instance,
compete for quality. It is hard to believe that they would sacrifice a competitive edge for
making reverse engineering a little harder. Yet we are curious to see promising applications in
the future.

2.2 Variants of Digital Image Forensics

So far, we have considered digital image forensics in a very general setting. In particular,
we have not made any assumption with regard to the access the forensic investigator has
to components of the image generation process or to their respective inputs and outputs.
The literature usually understands digital image forensics in a more narrow sense and refers
to passive–blind image forensics [181]. Before we follow this established convention in the
remainder of this text, we have to delineate the meaning of ‘passive’ (Section 2.2.1) and
‘blind’ (Section 2.2.2) in this context, and thereby set up the scope of the following discussions
(Section 2.2.3).

2.2.1 Passive vs. Active Image Forensics

Digital image forensics is called passive if the forensic investigator cannot interfere with the
image generation process and control type and/or appearance of identifying traces. The image
generation process is considered as a ‘read-only’ procedure and the forensic investigator is
confined to examine image characteristics that are generated by this process.

Identifying traces in passive image forensics in general divide into device characteristics and
processing artifacts. The former refer to inherent variations between different acquisition (or
output) device(s) and thus allow inference about the origin of a given digital image. Such
variations may exist, for instance, because manufacturers use different components or adjust
parameter settings for different devices. They can also be caused by (unwanted) inherent
technological imperfections, such as sensor defects. Processing artifacts, on the other hand,
relate to identifying traces that are introduced by post-processing the acquired digital image.
Hence, they are a means to assess image authenticity. Similar to device characteristics, different
processing procedures may vary in the characteristics of resulting traces and thereby allow
inference about the type of processing. Both device characteristics and processing artifacts can
be tested for their presence and consistency, whereby inconsistent device characteristics are
themselves a processing artifact.

13



2 Principles of Digital Image Forensics

Active approaches differ from passive approaches in that the generation process is purposely
modified at an earlier stage to leave behind specific identifying traces. This auxiliary data,
would—once being tied to the image—establish a link to the image’s origin or ensure the
image’s authenticity, respectively. Typical instances of active approaches attach metadata to
the image (e. g., a cryptographic signature [71] or a robust hash [230]) or embed a digital
watermark directly into the image itself [43]. Note that the image generation process in
Figure 2.1 and the notion of identifying traces are general enough to cover both, passive and
active approaches. Consider for instance the embedding of a digital watermark, which is just
an additional component to the overall image generation process, specifically conceived to
produce identifying traces.6

Identifying traces in active image forensics are designed to link the resulting image to its origin,
or to be sensitive (‘fragile’) to (certain types of) image post-processing. By testing for their
presence and consistency, these traces allow inference about the responsible component itself
as well as subsequent components in the image generation process. In contrast to identifying
traces in passive approaches, type and appearance of such traces can be chosen in anticipation
of potential subsequent steps of the image generation process. They can also be designed
based on cryptographic protocols to guarantee trustworthiness by means of mathematical
proofs.7 Active approaches ideally need to be implemented directly in the acquisition device. It
is not possible to infer parts of the generation process prior to the active insertion of respective
traces. This reliance on special-purpose hardware is one of the major drawbacks of active
image forensics: it does not allow to assess the trustworthiness of arbitrary images of unknown
provenance. Moreover, recent examples of hacked active authentication systems of major digital
camera vendors suggest that such systems create a deceptive impression of trustworthiness
when implementation errors cannot be ruled out.8

2.2.2 Blind vs. Non-Blind Image Forensics

Digital image forensics is called blind if the forensic investigator is confined to examine the
final output of the generation process. In particular, knowledge neither of the original scene
nor any intermediate result of the generation process is available at the time of analysis. This
includes the forensic investigator’s uncertainty about whether the image under analysis has
been subject to any kind of post-processing. A blind analysis however not necessarily implies
that the forensic investigator does not have any knowledge of or assumptions about potential
components of the image generation process. This applies in particular to active image forensics,
because the image generation process has been purposely modified by the investigator at an
earlier stage. But also passive forensic investigators may rely on such information. For instance,

6 The distinction between passive and active techniques not completely coincides with the notion of intrinsic and
extrinsic identifying traces, which have been defined by Swaminathan [217, pp. 11 & 13] in a very similar framework
as « traces that are left behind in a digital image when it goes though various processing blocks in the information
processing chain » and « external signals added to the image [. . . ] after capture », respectively. Adding noise to a
manipulated image with the goal to let it appear more natural would be extrinsic, just like embedding a watermark.

7 Cryptographic techniques not only allow to authenticate the image and link it to an acquisition device, but can also
ensure that no images have been deleted after acquisition [119].

8 Canon’s “Original Data Security Kit”, for instance, uses the very same cryptographic key for signing images taken
with arbitrary devices of the same camera model. Once this key is known (it is stored on the device), it is possible
to authenticate arbitrary manipulated images to let them appear trustworthy [209].
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it is often known (with reasonably high certainty), which device captured the image when it is
analyzed for inconsistent device characteristics and potential manipulations [155, i. a.].

Additional information about intermediate results helps non–blind forensic investigators to
disentangle scene and generation process characteristics, respectively, and hence to make
more informed decisions. Such data may be available from alternative sources (for instance,
earlier versions of a processed image that have been published elsewhere), or could have
been stored purposely in advance (most likely the acquired image). Side information about
the original scene may also be retrieved from other (trustworthy) images that exist of the
same scene. Non–blind approaches in general have the advantage to mitigate some of the
forensic investigator’s uncertainty. At the same time, they are often unviable in practical
settings. In particular, non–blind forensics precludes the examination of arbitrary images of
unknown provenance.

Swaminathan et al. [220] further divide non–blind forensics into semi–intrusive and intrusive
approaches.9 A semi–intrusive analysis considers the image generation process as a black
box, which is fed known input signals and allows inference about the overall input-output
relation. In an intrusive analysis, the forensic investigator also has knowledge of the inputs
and outputs of individual components of the image generation process and aims to determine
their specific instantiation. This distinction becomes particularly relevant when the forensic
investigator is less interested in assessing the trustworthiness of an image, but really in “reverse-
engineering” parameters of the image generation process (to which she is granted access).
It is then possible to design special inputs, either to the complete generation process or to
individual components, that are particularly suitable to analyze and tell apart identifying traces
of different instantiations [221].10

2.2.3 Passive–Blind Image Forensics

In the remainder of this text, we focus on passive–blind image forensics [181] and use this
term synonymously with digital image forensics. It follows from the above discussions that
passive–blind forensic investigators neither can access or control components of the image
generation process (passive) nor have knowledge of its inputs or intermediate results (blind).11

Their analysis is solely based on inherent device characteristics and processing artifacts, which
they (aim to) extract from the image under investigation to infer particulars of the image
generation process.

Because the forensic investigator’s view is restricted to the image under analysis, passive–blind
image forensics will always remain an inexact science. With digital images being projections of
the infinite set of all conceivable scenes, the forensic investigator can never fully know whether
a depicted scene is indeed a valid representation of the real world, or whether the image has
been manipulated in some way. In general, there will always exist a (possibly infinitesimal)
residual probability that a particular scene imposes certain image characteristics that appear
to the forensic investigator as device characteristic or processing artifact and thus lead to
false decisions. Moreover, any image generation process inevitably involves quantization. By
definition, quantization causes information loss and hence leaves the forensic investigator

9 In this terminology, blind image forensics is referred to as non–intrusive forensics.
10 In an earlier work, Khanna et al. [121] called these specifically designed inputs probe signals.
11 Some authors [161, i. a.] only use the term ‘blind forensics’ instead and do not make the passive character explicit.
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with an additional source of uncertainty. As a consequence, any result of passive–blind image
forensics has to be understood as indication, which per se excludes absolute conclusions.

However, the advantage of passive–blind image forensics is its universal applicability. In
particular, it is applicable to the analysis of arbitrary images of unknown provenance. Passive–
blind image forensics does not rely on a closed infrastructure of trustworthy special-purpose
acquisition devices that actively introduce identifying traces to the resulting images. While this
might be a viable option for relatively small-scale applications, it is certainly too costly and
most likely politically unviable to be implemented in typical consumer devices.

2.3 Abstraction Layers in Passive–Blind Image Forensics

Passive–blind forensic investigators may examine identifying traces at different ‘levels’ of
abstraction [147, 231]. Such abstraction layers—a general concept to the forensic analysis of
any type of digital evidence with a semantic meaning [27]—help to encapsulate and study basic
properties of scene and generation process characteristics, respectively. Figure 2.4 illustrates
relevant abstraction layers in the context of passive–blind image forensics and serves as a
blueprint for the following discussions. Levels of analysis and respective image characteristics
of interest are arranged row-wise in the upper part of the figure. Dashed arrows indicate how
relevant characteristics ‘propagate’, i. e., which characteristics may interfere with each other. At
the lowest level, forensic investigators analyze generation process characteristics by interpreting
digital image data as a sequence of discrete symbols without taking any semantic information
into account (Section 2.3.1). Higher levels abstract from the plain signal and examine how
scene characteristics in general and the image’s semantic meaning in particular have been
affected by the image generation process (Section 2.3.2). Apart from the examination of
image characteristics and scene properties, forensic investigators can further exploit auxiliary
metadata that is stored with the image (Section 2.3.3).

2.3.1 Signal-Based Analysis

Signal-based forensic analyses understand the image under investigation as a plain sequence of
discrete symbols and ignore its semantic meaning. Both device characteristics and processing
artifacts can affect the appearance of this very signal, whereas post-processing may also result
in missing or inconsistent device characteristics and vice versa12 (cf. Section 2.1.4). Because
the image is analyzed independent of its semantic meaning, ideal identifying traces at the
signal-level can only exist if they are independent of the image content [7, 125]. This is also
reflected in Figure 2.4, which illustrates that low-level forensic analyses do not take higher-level
scene properties into account.

In practice, we observe a continuum of possible analyses from the signal-level to higher
levels. First, certain procedures in the image generation process are inherently content-
adaptive (for instance edge-directed demosaicing [29] or changes of image resolution based
on seam-carving [8]) and forensic investigators may incorporate this knowledge [220, i. a.].
Second, certain parts of an image need to be excluded from the forensic analysis or require

12 Re-digitization may affect identifying traces of previous processing.
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Figure 2.4: Abstraction layers in passive–blind image forensics. For a given image under analysis,
passive–blind image forensics infers particulars of the unknown image generation process based on
device characteristics and processing artifacts. These generation process characteristics not only
interfere with each other but also with characteristics of the scene and auxiliary metadata stored with
the image, respectively. Forensic investigators can therefore conduct their analysis at different levels
of abstraction.

a special treatment (e. g., saturated or largely homogenous regions in the detection of copy-
move forgeries [69, 195]). Finally, signal-level indications may be combined with semantic
information because low-level analyses are often not sufficient to answer the general question
whether the image under investigation is authentic. More specifically, the sole detection
of post-processing in general does not reveal whether the semantic meaning of the image
has changed. Therefore, most practical forensic algorithms—although fully automatable in
theory—today require a human interpretation of their results.
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2.3.2 Scene-Based Analysis

By explicitly taking scene properties into account, forensic investigators abstract from the
discrete image data and examine identifying traces at a higher level, cf. Figure 2.4. Here, we
can further distinguish between physics-based and semantics-based analysis. The former relates
to general scene characteristics that are inherent to (projections of) the real world, whereas
the latter refers to the semantic meaning of the particular image under investigation.

2.3.2.1 Physics-Based Analysis

The premise to any physics-based [180] analysis is that (projections of) real-world phenomena
obey certain general physical rules, which are induced by laws of nature. Any violation of
these rules is understood as a processing artifact and can serve as identifying trace in a forensic
investigation. Ng and Chang [177] called this the ‘natural scene quality’ of a digital image
and mentioned relevant characteristics like illumination, shadows and reflections of objects in
the image. Other traces result from geometric constraints [57], (e. g., the relative position of
objects in the real world), or texture and surface characteristics.13 As indicated by Figure 2.4,
also device characteristics influence certain general scene characteristics. A typical example
are illumination and shadows in an image. They may vary depending on whether a flash was
fired or not. Lens radial distortion is another example [37]. Here, genuinely straight lines in
the real world appear curved in the depicted scene.

All the above characteristics have in common that they can be studied without explicitly
knowing the scene’s semantic meaning. It is rather the ‘syntax’ of the scene that is of interest
here. Yet because these characteristics are examined based on the digital image data, their
analysis can be conducted by computational methods. Many forensic algorithms of this kind
are nevertheless semi-automatic in the sense that they require a human pre-selection of salient
objects to analyze [112, 149] and/or human interpretation of the results [201].

2.3.2.2 Semantics-Based Analysis

At the highest level, a semantics-based analysis directly relates to the semantic meaning of
the image under investigation (cf. Figure 2.4). The key question to answer is whether the
information conveyed in the image is plausible, i. e., whether the image is a valid representation
of the real world. This entails the interpretation of the depicted scene and thus requires
contextual knowledge, which relates the digital image to the presumed original scene in the
real word (for instance, what is depicted in the image, where and when was the image captured,
. . . ). Inconsistencies between context information and semantic meaning of the image are
then understood as processing artifact. Because computer algorithms for fully automated and
context-dependent image understanding do not exist, a truly semantic image analysis remains
a task that involves substantial human interaction. We will not discuss analyses at this level in
further detail in the scope of this text.

13 Such tests are not limited to the examination of objects (which have a certain semantic meaning) but may also
include surface texture or halftoning pattern of scanned documents [206].
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2.3.3 Metadata-Based Analysis

Apart from the image data itself, forensic investigators may exploit the rich source of auxiliary
digital data, which typically accompanies the image under investigation. Today, the preferred
method to organize and store such metadata is specified in the Exif standard [110]. In a forensic
analysis, metadata may provide information about the acquisition device and its settings, the
time and place of acquisition, the software that was used for post-processing, and much more
[4]. (This is also reflected in Figure 2.4, where the metadata field covers the whole range from
scene characteristics to generation process characteristics.) Moreover, many digital images
are accompanied by low-resolution thumbnail images to speed up the preview in file browser
applications.

Format, content, and structure of metadata and thumbnail images can serve as a source of
forensic evidence on their own. These characteristics allow to assess image trustworthiness
independent of the actual image data [4, 207, 118]. It is also possible to link this information to
the image and to interpret scene-level and signal-level inconsistencies as processing artifact. In
a signal-level analysis, Kee and Farid [117] for instance estimated parameters of the thumbnail
generation process from the image data. Semantic inconsistencies can be uncovered by a high-
level comparison of thumbnail and full-resolution image [168] or by tests for the plausibility of
certain camera settings (e. g., focal length, shutter speed, date and time of acquisition, . . . ).

However, a downside of metadata is that it is relatively easy to modify. Because the metadata
is stored detached from the actual image, it is always possible to alter parts of or completely
replace metadata and thumbnail images in order to conceal particulars of the image generation
process. As a result, the forensic analysis of auxiliary digital data in most cases can only be a
first step to a detailed image-data based analysis.

2.4 Specific Goals of Passive–Blind Image Forensics

Passive–blind assessment of image trustworthiness subsumes a variety of more specific goals.
Figure 2.5 illustrates that we can in general distinguish three categories. Tests for the very
presence (or absence) of components of the image generation process at the acquisition, post-
processing or output phase allow to detect computer-generated, processed, or recaptured
images, respectively (Section 2.4.1). By examining the concrete instantiation of certain
components, it is further possible to identify the source of an image, to infer its processing
history, or to determine the output device in a re-digitization procedure (Section 2.4.2). Finally,
the linkage of a number of image generation processes can be of interest, for instance with
respect to the time of their invocation or their equivalence (Section 2.4.3).

2.4.1 Tests for the Presence of Components

2.4.1.1 Detection of Computer-Generated Images

The detection of computer-generated images belongs to the first problems studied in the
area of digital image forensics [60, 177].14 The main difference between computer-generated

14 It can be even traced back to much earlier applications in content retrieval [6].
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Figure 2.5: Specific goals of passive–blind image forensics.

images and other types of digital images is the absence of an image acquisition device in the
image generation process. Rather, computer-generated images are digital representations of
imaginary scenes that result from human creativity. It is this lack of a real natural phenomenon
in combination with the absence of an acquisition device that has motivated virtually all
existing detectors of computer-generated imagery.

More specifically, computer-generated images can be detected by the physics-based analysis of
general scene characteristics, where the working assumption is that projections of complex real
natural phenomena are hard to synthesize with a computer. Image rendering software is con-
fined to simplified models of reality, which need to be kept computationally tractable [180].15

More general, it is believed that digital images of natural phenomena exhibit common statis-
tical properties independent of the actual acquisition device and the depicted scene. These
natural image statistics include for instance empirical measures such as power law and scale
invariance [62], or spatial and inter-scale correlation [21]. Computer-generated images do
not fully conform to these characteristics and thus become detectable [177, 159]. At the
signal-level, image rendering software typically does not mimic the exact processing chain of
imaging devices, making computer-generated images detectable because of missing device
characteristics [47, 75].

2.4.1.2 Detection of Processed Images

One of the most fundamental problems in digital image forensics is to infer whether the
image under analysis has been modified after initial acquisition. At the signal-level, processing
artifacts can be detected by testing either for the existence of processing-specific characteristics
[69, 196, 72, 208, 131, 211, i. a.] or for missing or inconsistent device characteristics. As to

15 Ng et al. [180] point out that the most severe simplifications occur at the level of object geometry, surface, and
illumination of the depicted scene. Other authors further note differences in the color representation [6, 237].
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the latter, the literature has so far been mostly concerned about the examination of traces
generated in the acquisition phase [147, 198, 154, 111, i. a.] and only few works have focused
on characteristics of the output device [116]. Inconsistencies can occur both inter- and intra-
characteristic and may become particularly indicative when parts of different images are
combined (‘spliced’ [176]) into one image. The advantage of device characteristics over
processing artifacts is that investigations are in general not restricted to identifying traces of
specific post-processing procedures. At the same time, however, device characteristics are only
of limited use for inference about the complete processing history, cf. Section 2.4.2.2.

Processing artifacts can also be detected at the scene level by checking for consistent general
scene characteristics. However, scene-level analyses today typically require a considerably
higher degree of human interaction (and interpretation) than signal-level analyses (cf. Sec-
tion 2.3.2.1). The latter, because of their high practicability and relative ease of automation,
have traditionally received more interest. Yet scene-level analyses offer some additional ad-
vantages to the forensic investigator. First, it is in general a challenging task to create image
manipulations that take into account and correct for the plethora of complex scene characteris-
tics. Second, scene-based analyses work at a higher abstraction layer and are often closely tied
to the examination of (projections of) individual objects. This results in a certain degree of
invariance to post-manipulation reduction of image resolution and/or quantization—or, more
general, any information-reducing operation, which will inherently affect subtle identifying
traces at the signal level.

2.4.1.3 Detection of Recaptured Images

Images that are re-digitized from two-dimensional (planar) products of an output device
(e. g., printouts) substantially differ from direct projections of real-world, natural phenomena.
As a consequence, recaptured images are not only detectable at the signal-level by testing
for characteristics of the output device [141], but also by the analysis of general scene
characteristcs. The latter relate to general properties of printed [60, 242, 76] or displayed
[26] images (e. g., surface texture pattern) and make the detection of recaptured images an
exception in the sense that already the presence of certain scene properties is considered as
identifying trace of the respective image generation process. This inconsistency in terminology
can be avoided by interpreting re-digitization as a form of post-processing (cf. Section 2.1.1)
and by understanding these traces as a special form of processing artifact.

2.4.2 Tests for the Instantiation of Components

2.4.2.1 Device Identification

The goal of device identification is to link the image under investigation to a particular (class
of) acquisition or output device(s). The former problem is typically referred to as source
identification [125], whereas it is mostly the problem of printer forensics that has received
interest on the output side. By its very definition, device identification is in general approached
by signal-based or physics-based analyses of appropriate device characteristics. We note
however that printer forensics, in the way it is discussed in the literature [1, 2], is not always
a truly blind problem. The forensic investigator is usually assumed to be in possession of
the analog output and has full control of the subsequent re-digitalization step (typically high-
resolution scanning). This is more a problem of computational [64] forensics, where the
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re-projection to the digital domain solely serves as a means to support forensic analyses.16

Therefore, we refer to Chiang et al. [35] for an extensive review of relevant approaches to
printer identification and focus on source identification in the following.

Although of main interest in theory, the identification of the very device [79, 155, 48] is not
always possible for practical reasons. Apart from situations where no suitable identifying traces
are known, all existing methods require access to the specific device that is to be identified, or
at least to a number of reference images acquired with that device. If these prerequisites are not
met (i. e., no reference traces of the device are available), the forensic investigator may resort
to lower levels of identification granularity, such as device model [125, 11, 220, 28, 85], brand
[240] or type (e. g., consumer-camera vs. signal-reflex camera, or digital camera vs. flatbed
scanner) [123, 164, 53], cf. Figure 2.6. In contrast to device identification, low-granularity
approaches only require reference traces of devices that are representative of a particular
(class of) image generation process(es) at the given level of granularity. This way, the forensic
investigator can infer at least some information about the image origin. Empirical results from
the literature however indicate that no single device characteristic is known to distinguish
between arbitrary low-granularity classes of acquisition devices. Practical settings may hence
require a combination of several device characteristics to narrow down the specific device as
best as possible.

2.4.2.2 Processing History

Apart from the question if the image under analysis has been modified (cf. Section 2.4.1.2), it
is also of interest to know how it has been processed. Such information is particularly useful
in the assessment of image authenticity. Inference on the processing history of digital images
involves to determine the sequence of post-processing steps that led to the final image, as well
as the parametrization of the respective components [223]. This is mostly a problem at the
signal-level, because scene-based analyses can only provide high-level indications (for instance,
which objects/parts of the image have been modified).

If forensic algorithms for the detection of processed images exploit identifying traces of
a specific type of processing, they inherently provide some information about the image’s
processing history. Nevertheless, a full recovery of the processing history is typically much more
involved, because identifying traces of earlier processing steps may be altered or attenuated by
subsequent processing steps. A further, more specific issue arises from ambiguous processing
artifacts that allow to identify a particular processing component, but not its parametrization.
For instance, several resizing parameters are known to introduce equivalent artifacts [197,
129], or may be hardly distinguishable from JPEG post-compression [74].

We stress once more that the detection of arbitrary image processing and intentional image
manipulations not necessarily coincide. Ultimately, forensic investigators need to distinguish
between legitimate and illegitimate post-processing in order to assess image authenticity. While
any type of processing may call into question the image’s authenticity, it requires interpretation
and understanding if and how the detected processing has affected the image’s semantic
meaning. Although of high practical relevance, the literature has been very indefinite in
this regard. Terms like ‘forgery’, ‘tampering’ and ‘manipulation’ have been used more or less

16 Other non–blind examples are given by Gaubatz and Simske [77, 78], who discuss combined printer-scanner
identification against the backdrop of highly structured and computer-generated images at the input side.
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synonymously, sometimes amplified by the label ‘malicious’ [69, 196] to better distinguish
between image processing and image manipulation. We refer to Chapter 3 for an attempt to
incorporate the notion of authenticity into a general passive–blind forensics framework.

2.4.3 Tests for the Linkage of Generation Processes

Apart from the analysis of single images, the examination of relations between a number of
digital images with respect to their generation processes can be of interest. The most relevant
questions are whether a group of images have been generated using the same input or output
device, or in which temporal order a number of given images have been generated.

2.4.3.1 Device Linking

Tests for a common input or output device are known as device linking [87]. Similar to device
identification, it is studied under the premise that images of the same provenance will exhibit
common device characteristics at the signal-level. The scenario differs from plain device
identification in that reference traces of the set of potential devices need not to be known.
The problem is approached by extracting suitable device characteristics from one (or several)
images, which are then tested against all remaining images. Device linking is in general the
harder task: Reference data in source identification is usually more reliable (of higher quality)
because it is obtained under controllable conditions.17

2.4.3.2 Temporal Forensics

The objective of temporal forensics [162] is to establish an order of a number of images—
typically acquired with the same device—with respect to the time of their generation. More
specifically, we can distinguish two scenarios depending on whether the images have been

17 If reference traces are aggregated from sample images, source identification and device linking converge, when the
number of images of the same (unknown) device is large enough [15].
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Table 2.1: Selected goals of passive–blind image forensics and relevant abstraction layers.
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generated independent of each other or whether all images are assumed processed versions
of each other. A necessary condition for the first scenario is that certain device characteristics
evolve over time, and that corresponding reference traces of at least one point in time are
available. As pointed out by Fridrich and Goljan [67], suitable identifying traces are most likely
due to undesired device imperfections and wear effects that are not part of the generation
process by design. The second scenario is closely related to the determination of processing
history [203, 45]. To a certain degree this problem is non–blind because the forensic investigator
observes intermediate results of the image generation process, however without knowing how
they relate to each other.

Mind that known signal-based or physics-based analyses cannot determine the exact time of
image generation, but rather hint to a possible time interval. Exact determination is only
possible with additional side-information about the real world (either because of semantic
information or subtle traces of natural phenomena similar to the electric network frequency
[94] in digital video and audio analysis), or metadata support.

2.4.4 Summary

Table 2.1 summarizes the two preceding sections and lists the various specific goals of passive–
blind image forensics together with respective relevant levels of analysis. For completeness, we
note that metadata may accompany signal- and physics-based analyses in virtually all of the
above discussed problems with the exception of printer forensics.18 A pure semantic analysis,
on the other hand, is only viable with regard to the detection of processing artifacts. In special
cases, it may also expose computer-generated images because of unrealistic content. Or it may
reveal information about the time of acquisition (e.g., when a calendar or watch is depicted).

2.5 Specific Goals of Counter-Forensics

Given Harris’ [95] broad definition of counter-forensics (cf. Section 2.1.5), it is clear that
counter-forensic attacks are in general relevant to each of the above-discussed specific problems
in digital image forensics. However, it is not our intention to reiterate every detail from the
counterfeiter’s perspective. More general, the counterfeiter ultimately strives for counterfeits

18 It is reasonable to assume that metadata of the output device does not exist.
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Table 2.2: Specific goals of counter-forensics.
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that appear trustworthy, i. e., counterfeits, which do not raise the forensic investigator’s
suspicion. This boils down to two principal goals a counterfeiter may pursue, namely the

. suppression of identifying traces, or the

. synthesis of artificial identifying traces, respectively.

Table 2.2 illustrates that both, suppression and synthesis can relate to either device characteris-
tics (Section 2.5.1) or processing artifacts (Section 2.5.2).

2.5.1 Suppression and Synthesis of Device Characteristics

Device characteristics allow forensic investigators to link the image under investigation to a
specific device or a class of devices. Counterfeiters, who want to hide the origin of an image,
will hence attempt to suppress relevant device characteristics so that a forensic analysis of the
image does not reveal which device(s) were part of the image generation process [83, 204,
142, 167]. Attacks against device identification schemes may further aim to forge the origin of
an image, i. e., to let the image appear as if it was generated using a device different from the
original one. Here, the counterfeiter not only needs to suppress traces of the true device, but
also needs to synthesize traces of the target device [83, 130, 214, 142, 215]. This type of attack
is typically considered more severe, because it can lead to a false accusation with respect to
the owner of the pretended device.

Synthesis of device characteristics is also a building block to the creation of plausible image
manipulations. In anticipation of forensic investigators that test for the consistent presence of
certain device characteristics, counterfeiters have to remove processing-related inconsistencies
therein. They do so by synthesizing relevant device characteristics, which either relate to the
original or to completely new device(s).

2.5.2 Suppression and Synthesis of Processing Artifacts

Counter-forensic attacks with the goal to hide traces of (post-)processing not only need to
make sure that device characteristics appear consistent but will have to suppress processing
artifacts in general [128, 129, 213, 24]. Often, this rather strict requirement is relaxed by
“replacing” conspicuous with plausible processing artifacts, for instance by exploiting lossy
JPEG compression. This way, subtle yet telling traces of previous manipulations are wiped out,
whereas established habits suggest that rather obvious JPEG artifacts are not per se considered
critical in many situations.
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Figure 2.7: Digital camera processing pipeline. Relevant identifying traces are printed in italics.

We note that there also exist situations where the synthesis of processing artifacts is viable.
Consider, for example, a manipulation where only parts of the image were resized to change
the image’s semantic meaning. Because resizing itself—if applied to the whole image—may
not impair authenticity, a counter-forensic attack could attempt to synthesize traces of resizing
in the remaining parts of the image (without actually resizing these parts). By removing such
processing-related inconsistencies, the whole image consistently appears resized and thus hides
the manipulation.

2.6 Selected Identifying Traces

We close this chapter with a brief informal overview of some of the most relevant device
characteristics (Section 2.6.1) and processing artifacts (Section 2.6.2) that have found appli-
cation in the literature. The intention of this section is not to give an in-depth exposition of
concrete forensic algorithms, but rather to discuss general properties of identifying traces these
algorithms may exploit. This way, this section serves as a connecter to the following Chapter 3,
where we turn to a formal perspective on identifying traces and digital image forensics in
general.

2.6.1 Device Characteristics

Components of acquisition and output devices, respectively, leave behind characteristic traces
in the resulting image. By testing for presence and consistency of these device characteristics
in a given image under analysis, forensic investigators infer details about the image origin and
its authenticity. With reference to Section 2.4.2.1, we focus on characteristics of the acquisition
device, and in particular on digital cameras. Given their widespread use in our everyday
life, this type of acquisition device has by far received the most interest in the literature.
Nevertheless, many of the device characteristics we will discuss in the following also have their
place in the forensic examination of other types of acquisition devices, most prominently flatbed
scanners. We will mention relevant differences whenever appropriate. We refer interested
readers to Chiang et al. [35] for a comprehensive review of scanner characteristics.

Figure 2.7 depicts a stylized processing pipeline of a typical digital camera with its most
relevant components [199, 100]. The incoming light of the scene is focused on the sensor by a
system of lenses. An optical filter is interposed between these components to reduce undesired
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Figure 2.8: Lens radial distortion lets initially
straight lines appear curved in the image. From
left to right: an ideal rectangular grid, and the
same grid subject to barrel and pincushion dis-
tortion, respectively.

light components (e. g., infrared light). Typical digital imaging sensors capture image pixels by
distinct CCD or CMOS sensor elements that capture the incoming light and output an electric
charge proportional to the light at that location. Although digital camera images usually consist
of the three color channels red, green and blue (RGB), the sensor itself is color-blind as it can
only measure the light intensity. To obtain a color image, the vast majority of digital camera
designs employ a color filter array (CFA), such that each sensor element only records light of
a certain range of wavelengths. The remaining color information has then to be estimated
from surrounding pixels of the raw image (after possible pre-processing and white-balancing).
This process is usually referred to as color filter array interpolation or demosaicing. After
CFA interpolation, the image is subject to a number of camera-internal post-processing steps,
including for instance color correction, edge enhancement, and finally compression.

2.6.1.1 Lens Distortion

Each digital camera is equipped with a complex optical system that projects a scene to a sensor
of much smaller dimension. This projection is in general not perfect and a plethora of lens
distortions (or aberrations) can be found in digital images despite extensive compensation
efforts of lens and camera manufactures.

Because different camera models employ different optical systems, which all have their own
individual distortion profile, these aberrations may serve as identifying traces of the specific
camera model.19 Choi et al. [37] first took this path and proposed to exploit lens radial
distortion in a forensic context. Lens radial distortion is a non-linear geometric distortion that
lets initially straight lines appear curved. In general, we can distinguish between barrel and
pincushion distortion, respectively (cf. Figure 2.8), whereas shape and strength depend on the
concrete lens(es) in use.

Van et al. [229] made similar endeavors with respect to the analysis of chromatic aberrations,
which occur because of lens-specific variations in the dispersion index for light components of
different wavelengths. This, by Snell’s law, causes a polychromatic ray of light to be spread over
different positions of the sensor plane, cf. Figure 2.9. Here, axial chromatic aberration refers to
wavelength-dependent longitudinal variations of the focal point along the optical axis, whereas
lateral chromatic aberration explains off-axis displacements of different light components
relative to each other. Although often ignored by the viewer, in particular lateral chromatic
aberrations are a visible part of almost any digital camera image, where they manifest in color
fringes along edges.

Vignetting is another type of visible lens distortion that describes the radial decrease of light
intensity towards the corners of an image. As with chromatic aberrations, its appearance is

19 Yu et al. [243], against the backdrop of a small number of shots of one very specific probe image, report that
chromatic aberrations might even be specific to individual lenses. Yet it seems too early to draw general conclusions
and further experiments are necessary.
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Figure 2.9: Formation of axial and lateral chromatic aberrations due to variations in the lens’ dispersion
index for light components of different wavelengths. The figure is taken from [86] and represents the
complex optical system of real digital cameras in a stylized manner as a single lens.

believed to be characteristic to the optical system employed by the camera model and thus
gives rise to applications in source identification [158].

A general influencing factor to the appearance and strength of most lens distortions throughout
different regions of an image is the (radial) distance to the optical center of the image.20 Hence,
as first detailed by Johnson and Farid [111] for the specific example of chromatic aberration,
image manipulations may introduce intra-characteristic inconsistencies when portions of an
image are replaced by image parts with a mismatching local distortion profile.21 Figure 2.10
gives a concrete example and illustrates how lateral chromatic aberrations vary according
to the position in the image. Very recently, Yerushalmy and Hel-Or [241] extended this
observation to so-called purple fringing aberrations (FPA), which are attributed (amongst
others) to micro-lenses in front of individual sensor elements.

2.6.1.2 Sensor Imperfections

Not only the optical system bears imperfections, but so does the sensor in the process of
converting incoming light to a digital image. Sensor imperfections caused by variations in the
manufacturing process and sensor wear-out have been on the agenda of forensic investigators
from the very beginning.

More specifically, any sensor introduces a certain amount of noise to the resulting image—
slight fluctuations in the intensity of individual pixels even when the sensor plane was lit
absolutely homogeneously. Sensor noise broadly classifies into temporal noise and spatial
noise. Noise components that are stochastically independent over different invocations of
the image generation process belong to the former type, with shot noise and read-out noise
being typical representatives. On the contrary, spatial noise is relatively stable over time and

20 The optical center is the point where the optical axis strikes the sensor plane and does not necessarily coincide with
the geometrical center of the digital image. As such, it can be considered a device characteristic on its own.

21 Empirical results by Gloe et al. [86], however, suggest that complex lens systems often lead to unpredictable (or
perhaps: not yet fully understood) device characteristics that may be easily mistaken for processing artifacts.
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Figure 2.10: Lateral chromatic aberration in a digital camera image in the form of reddish color fringes
along edges, which are marked by red arrows in the magnified (and contrast-enhanced) details on
the right. The occurrence and strength of such color fringes in general varies with the position of the
respective edge in the image (here, they only occur at edges facing away from the image center). The
original image of an Apple MacBook Pro keyboard was acquired with a Nikon 18–200 mm zoom lens at
a focal length of 150 mm.

only varies across individual sensor elements. This makes spatial noise particularly interesting
to forensic investigators as it not only can serve as a ‘fingerprint’ [137] of a specific digital
camera, but can also be tested for consistent appearance across the image [154]. The main
components of spatial noise are photo-response non-uniformity (PRNU) and dark current. PRNU
is a multiplicative noise that is caused by differences in the quantum efficiency of individual
sensor elements due to inevitable variations in their manufacturing process. Dark current is a
thermal effect, which results in free electrons even if the sensor is not exposed to any light.
Yet its relative strength depends on the individual sensor elements and, for instance, minute
differences in their size.

A standard model of the different noise sources is given in the following equation [96, 32],
where function sensor : RMN →X MN maps the incoming light s to a raw digital image r :22

r = sensor(s) = gγ
�
κ s +η

�γ+ ν . (2.1)

The multiplicative PRNU is represented by vector κ, whereas η subsumes a variety of additive
noise terms (including dark current, shot noise and read-out noise), and ν denotes quantization
noise. Scalars g and γ are fixed camera parameters that control gain factor and gamma
correction of the output signal, respectively.

Already Heerich [97], in 1998, alluded to the use of sensor noise as a means to identify
the specific image acquisition device (fax machines in this specific study). Groundbreaking

22 For simplicity, we assume that raw image and final image share a common alphabet X . In practice, raw images are
often stored with a higher bit depth. Moreover, the number of sensor elements usually exceeds the number of image
pixels. To speed up demosaicing, Me × Ne effective pixels, Me ≥ M , Ne ≥ N , are used to generate the final image by
circumventing special interpolation rules for border pixels. The number of recorded pixels might be even higher
when, for instance, a certain number of pixels is cropped to reduce visible vignetting effects in the final image.
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investigations into the use of dark current and photo-response non-uniformity by Kurosawa et al.
[137, 138] and Fridrich et al. [155, 32], respectively, have since then motivated a large number
of follow-up studies on noise-based device identification. Because the sensor output is subject
to further in-device processing, which is likely to interfere with subtle noise characteristics
(cf. Section 2.1.4), sensor noise would ideally be examined based on the raw sensor output
[133]. For example, subsequent color filter interpolation, by integrating over a number of
adjacent sensor elements, affects noise characteristics of individual pixels [63, 144]. Empirical
results suggest, however, that in particular PRNU is a highly indicative identifying trace in
arbitrary digital camera images [89],23 which may even survive a print-scan cycle [88].

Photo-response non-uniformity has also found applications in the examination of scanned
images [84, 122]. Here, the typical line sensor of flatbed scanners repeats spatial noise
characteristics along rows. This allows forensic investigators to distinguish between digital
camera images and scanned images [23]. We further note that not only the presence of
specific noise pattern, but also more general characteristics such as the relative strength [33]
and the statistical distribution [93, 124] of sensor noise can serve as identifying traces in
forensic settings.

Apart from sensor noise, sensor defects are another sensor imperfection of forensic relevance
[97, 79]. Sensor defects refer to sensor elements that constantly output too high or too low
intensity values. Occurrence and position of these defects are again specific to the individual
digital camera and accumulate over time, which also gives rise to applications in temporal
forensics [67]. A similar effect is caused by dust particles on the sensor protective glass [48,
184]. This type of identifying traces is mainly present in cameras with interchangeable lenses.
Yet, both sensor defects and dust particles can be relatively easily corrected for. In general,
their appearance also strongly depends on the image content and lens settings, making these
device characteristics less suitable for general purpose forensic analysis.

2.6.1.3 Color Filter Array Characteristics

Because the sensor can only measure the intensity of the incoming light, the generation of a
color image requires the light to be split up to its corresponding components (typically red,
green and blue). Most digital camera designs combine a single sensor with an array of color
filters so that different samples of the raw signal represent different color information. Missing
color information is then obtained from a demosaicing procedure.

The particular way of how these color filters are arranged is referred to as CFA configuration.
Different camera models employ different CFA configurations, making this parameter a valuable
device characteristic in the forensic analysis of digital images [220, 46, 127]. Although, in
theory, the CFA configuration is neither restricted to capture exclusively red (R), green (G) and
blue (B) components, nor confined to a particular layout [166], it is often one of the four 2× 2
Bayer pattern [10] that is repeated over the entire image plane. Here, two green elements are
arranged in a diagonal setup and each one red and one blue element fill up the remaining
space, cf. Figure 2.11.

23 Camera manufacturers strive for visually appealing output images and try to reduce sensor noise to a minimum.
While a correction for additive dark current by subtraction of a so-called dark frame is relatively straight-forward,
the suppression of multiplicative PRNU is more involved and thus typically traded off against processing speed.
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Figure 2.11: Typical digital cameras employ a color filter array (usually one of the four Bayer configura-
tions shown on the right). Each sensor element only records light of a certain wavelength (here red,
green and blue). A full-color image is obtained by interpolating the remaining color information from
surrounding pixels of the raw image.

Demosaicing implies that only at most one third of all pixels in an RGB image contain genuine
information from a sensor element.24 The remaining pixels are interpolated from neighboring
samples of the raw signal,

x̂ = demosaic
�
r ,C

�
, (2.2)

where function demosaic :X MN×{R, G,B}MN →X 3MN is the demosaicing algorithm. Matrix C
is of dimension M × N and represents the configuration of the color filter array, and x̂ is the
demosaiced full-color image. A side-product of CFA interpolation is that neighboring pixels
become highly inter-dependent and, as first mentioned by Popescu and Farid [198], the
regular structure of typical CFAs leads to periodic variations throughout the entire image.
Ho et al. [99] further added that similar dependencies occur between different color channels
of the image. Post-processing may wipe out these traces and thus leads to intra-characteristic
inconsistencies. Yet the complete absence of CFA artifacts could also be an indication of a
non-camera image [75].

The concrete form of demosaicing inter-pixel dependencies depends not only on the CFA
configuration, but also on the demosaicing algorithm. This observation has motivated Bayram
et al. [12] and Swaminathan et al. [220], amongst others, to understand such characteristics
as an identifying trace of the specific camera model, or, as noted by Cao and Kot [25], of the
raw image processing software used to create the final image.

2.6.1.4 JPEG Compression Characteristics

After CFA interpolation, the demosaiced image undergoes a number of device-internal process-
ing steps, x = process(x̂ ), process :X 3MN →X 3MN . From the forensic investigator’s point
of view, JPEG compression is among the most relevant of these procedures for three reasons.
First, JPEG [108] is the quasi-standard for storing digital camera images, as it offers consumers
a reasonable trade-off between visual quality and file size. Second, because of its lossy char-
acter, JPEG is likely to dilute some of the device characteristics of previous components of
the acquisition device. Finally, JPEG compression introduces its very own identifying traces,

24 We say “at most” because sophisticated demosaicing procedures may also ‘re-compute’ samples of the raw signal.
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which can be tested both for existence and consistency. These traces are of particular interest
because JPEG compression is usually the last step in the in-camera processing chain, i. e., only
post-processing outside the camera can impair their existence.25

JPEG compression works by dividing the image into non-overlapping blocks x�i of 8×8 pixels,
where x�i denotes the i-th vectorized block. Each block is fed into a two-dimensional discrete
cosine transformation (2D-DCT) to yield 64 DCT coefficients, c�i = (c�i 1, . . . , c�i 64), which are
then quantized using coefficient-specific quantization factors, q̇ j , 1≤ j ≤ 64. The strength of
compression is controlled by a set of quantization tables that are stored with the JPEG image.
Farid [55] reports that these tables are a good indicator of the digital camera model. Camera
manufacturers are free to fine-tune quantization tables according to their own preferences,
and consequently a considerable number of different tables can be found in the wild. Kee et al.
[118] further note that no camera model seems to share tables with the widely-used Photoshop
image processing toolbox.

By its very definition, quantization in the JPEG compression pipeline affects the distribution
of DCT coefficients. In particular, quantization introduces gaps to the histogram of DCT coeffi-
cients, whereas the width of these gaps depends on the quantization factor, q̇ j (i. e., on the
corresponding quantization table). If this ‘JPEG fingerprint’ [68] is found in an image stored in
a lossless format (e. g., PNG or TIFF), the image was very likely JPEG compressed before [52,
157, 156]. The distribution of DCT coefficients is further influenced by processing artifacts due
to additional quantization steps (outside the device) [169, 34, 81]. For example, the special
case of double compression with quantization factors q̇ j and q̈ j imposes the following relation
for the j-th DCT coefficient of the i-th block [196]:

◦◦c�i j = q̈ j c̈�i j = q̈ j

� ◦c�i j

q̈ j
+ 1/2

�
= q̈ j

��
c�i j

q̇ j
+ 1/2

�
q̇ j

q̈ j
+ 1/2

�
, (2.3)

where
◦c�i j and

◦◦c�i j denote the dequantized DCT coefficient after the first and second compres-
sion step, respectively.26 Characteristic peaks and gaps occur in the corresponding histogram
depending on the specific combination of quantization factors. This can be exploited to detect
images that have been re-saved as JPEG multiple times [196, 31, 188, 104, amongst others].
Figure 2.12 illustrates this effect for the particularly indicative case where the second quan-
tization factor is half the first quantization factor, q̇ = 2q̈. A typical example of a histogram
of double-quantized DCT coefficients is shown in Figure 2.13. Lukáš and Fridrich [152] first
noted that such characteristics of histograms of multi-quantized DCT coefficients allow to infer
quantization tables of earlier JPEG compression steps (e. g., the table of in-device compression).
This has led to a number of related studies [188, 210]. Local inconsistencies due to traces of
multi-compression can further serve as indication of localized post-processing [148, 56].

Because each 8 × 8 block is transformed separately, JPEG compression gives rise to the
well-known (and oftentimes visible) blocking artifacts in the spatial domain. Similar to DCT co-
efficient histogram characteristics, such traces can hint to prior JPEG compression of images
stored in a lossless format [52, 170]. Blocking artifacts can also be tested for consistency.

25 As more and more digital cameras allow to store images in uncompressed raw format, traces of JPEG compression
could likewise be seen as processing artifact. In general, it is up to the forensic investigator to decide whether
compression took place inside the device or (possibly after further post-processing steps) outside the device.

26 We ignore rounding and truncation errors that arise in the inverse DCT.
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Figure 2.12: Formation of gaps in the DCT co-
efficient histogram after double-compression
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valued coefficients c are mapped to integers
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that are multiples of the corresponding quan-
tization factor q̇. In the second compression
step, every other multiple of quantization factor
q̈ has no single corresponding input value. The
shaded triangles visualize coefficient intervals
that quantize to the very same discrete value.

Inconsistencies may occur, for example, if parts of a (former) JPEG image are processed or
replaced by a non-compressed patch. Moreover, the combination of two or more JPEG images
can lead to inconsistent block boundaries when the splicing procedure ignores the regular 8×8
grid and inserts misaligned patches [143].

On a more general level, quantization artifacts are not limited to the specific case of JPEG
compression based on 8 × 8 image blocks. Different source coders may vary in the block
size and the employed transformed domain (for instance, Wavelet-based compression in the
JPEG2000 standard [109]) and thus introduce their very own identifying traces [146].
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Figure 2.13: Traces of JPEG double compression in the histograms of quantized (1,1) DCT coefficients.
Both histograms were obtained from the grayscale image depicted on the left. The upper histogram
of coefficients ċ�i 1 corresponds to a single-compressed version stored with JPEG quality 90 (q̇1 = 3).
The lower histogram of coefficients c̈�i 1 belongs to a double-compressed version that was first stored
with JPEG quality 80 (q̇1 = 6), followed by a second compression with JPEG quality 90 (q̈1 = 3). Double-
compression introduces characteristic gaps to the DCT coefficient histogram that are not present in the
histogram of the single-compressed image. (The original image is part of the Dresden Image Database
[82]. To enhance the quality in print only the center part of the histograms is shown.)
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2.6.1.5 Camera Response Function

All device characteristics we have discussed so far reflect particularities of specific components
of the image acquisition pipeline. However, it is also possible to consider the complete device
as a black box (cf. Figure 2.7) and to study its input-output relation, which is also known as
camera response function or radiometric response function, crf : RMN →X MN . This mapping
from incoming light to pixel intensities is monotonically increasing and typically of non-linear
behavior, the latter of which is also reflected in the gamma correction term, γ, in the sensor
noise model in Equation (2.1). Ng et al. [182] used a more flexible parametric model of
non-linearity,

crf(s) = s
∑K

k=0 ak s k
, (2.4)

(yet ignoring noise and quantization effects), which they later extended to include a linear
term for low irradiance [178, 174]. As first mentioned by Lin et al. [147] in a forensic context,
different camera models are in general expected to have different camera response functions,
i. e., they vary in the coefficient vector a of the above model. This gives rise to applications in
camera model identification. Image manipulations can be detected by testing for a consistent
response function throughout the image, which applies in particular to cases where a number
of images from different sources are ‘spliced’ together [147, 103]. Lin et al. [147] further
note that intra-characteristic inconsistencies may also become apparent by examining and
comparing the camera response functions of different color channels, which should exhibit a
similar shape for original images.

2.6.2 Processing Artifacts

Post-processing can not only be detected by means of inconsistent or missing device character-
istics, but also because of specific processing artifacts that certain image processing primitives
leave behind in the resulting image. While the former—against the backdrop of requiring
knowledge of (or assumptions about) potential acquisition devices—have the advantage of
being relatively independent of the actual form of post-processing, the latter allow for the
targeted analysis of particular classes of post-processing. This can provide forensic investi-
gators with additional information about the processing history of the image under analysis.
Consequently, a number of specific processing artifacts have received interest in the literature,
three of which we will discuss in more detail in the following.

2.6.2.1 Copy–Move Manipulations

Among the large class of processing artifacts, traces of copy–move manipulations have received
particular interest in the literature. A copy–move manipulation copies a part of an image to
insert it into another part of the same image, usually with the goal to conceal or emphasize
details of the original image. Figure 2.14 gives a typical example and depicts a copy–move
manipulation in an image of an Iranian missile test. By its very definition, a copy–move
manipulation introduces duplicate regions to the resulting image. Fridrich et al. [69] were the
first to understand this as identifying trace in a forensic context. The authors also mentioned
that forensic investigators, in a more realistic setting, will rather encounter near-duplicate
image regions. First, the copied region often needs to be further processed to better align with
the surrounding image content. Second, the manipulated image will often be JPEG compressed
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Figure 2.14: A typical copy–move manipulation, applied to a press photograph of an Iranian missile
test. A non-functioning missile in the presumably original image (shown on the left, source: online
service of the Iranian Daily Jamejam Today) was replaced by a copy of another missile (middle, source:
Iranian Revolutionary Guards). The manipulated image appeared on the title page of a number of
major Western newspapers [183]. The right image shows the output of Popescu and Faird’s [195]
copy–move detector and marks near-duplicate regions.

prior to publication. This observation has led to a plethora of copy–move detectors, which
basically all differ only in their definition of ‘near-duplicate’. Specific instances include, for
example, the detection of blurred regions [160] or so-called Poisson cloning [49]. The latter
yields particularly appealing manipulations by blending the boundaries of the copied region
adaptively to its neighborhood [187]. Finally, a more general form of copy–move manipulation
may also include a geometric transformation (e. g., scaling or rotation) of the copied region
[105, 185, 5]. We refer to two recent surveys by Christlein et al. [39, 40] for a comprehensive
overview of relevant approaches to copy–move detection.

2.6.2.2 Resampling

Not only copy–move manipulations often require parts of digital images to be resized or rotated
in order to better align with the remaining image content. In general, any geometric trans-
formation—whether applied to a specific region of the image or to the image as a whole—is
of interest when inferring the processing history of an image under analysis. Technically,
a geometric transformation can be described as resampling of the original image grid to a
new image grid. Interpolation is the key to smooth and visually appealing transformations.
However, a virtually unavoidable side-effect of interpolation is that it introduces linear de-
pendencies between groups of adjacent pixels. Popescu and Farid [197] and Gallagher [74]
first realized that these dependencies periodically vary throughout the image and thus can
be understood as identifying trace of a previous resampling operation. The period length
in general depends on the transformation parameters, which allows for inference about the
specific transformation applied to the image [126]. Figure 2.15 illustrates the formation of
periodic linear dependencies for the particularly indicative case of upscaling by a factor of two
using bilinear interpolation. It was later noted [193, 236, 132] later noted that resampling may
also interfere with characteristics of previous JPEG compression. More specifically, a geometric
transformation not only maps the image itself to a new image grid, but also affects the shape
of existing JPEG blocking artifacts. In the above example of upsampling by a factor of two,
transformed “JPEG blocks” will have a size of 16× 16 instead of 8× 8 pixels, which can be
interpreted as a further indication of resampling.27

27 In this specific example—and in general for any integer scaling factor—a subsequent JPEG compression will
“restore” the original 8× 8 grid.
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2.6.2.3 Contrast Enhancement

Our last example of specific processing artifacts concerns identifying traces of the general class
of pixel intensity mappings

x i 7→ bf(x i) + 1/2c , (2.5)

where f : X → X is a monotone and non-linear function. Such mappings (with f(·) being
monotonically increasing) are commonly used for contrast enhancement of digital images and
are thus an important image processing primitive. Gamma correction is a special case, where
function f(·) takes the form

f(x i) = (2
`− 1)

�
x i

2`− 1

�γ
. (2.6)

Although contrast enhancement alone typically will not impair the authenticity of an image,
the detection thereof is still of high relevance in digital image forensics for several reasons
(apart from the general question about the processing history of the image under analysis).
For example, many forensic techniques rely on some form of linearity assumption (e. g., the
assumption of linear inter-pixel dependencies in resampling detection, cf. Section 2.6.2.2
above), which may not hold after non-linear processing. Moreover, contrast enhancement may
be part of a more complex manipulation, where it is applied locally with the objective to adjust
manipulated regions to their surrounding.
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Figure 2.16: Formation of peaks and gaps in the his-
togram of contrast-enhanced digital images. A peak oc-
curs if multiple discrete input values, after rounding, map
to the same output value (here, for example, f(4) =
f(5) = 8). On the contrary, a gap occurs if a specific
output value has no single corresponding input value
(here, for instance, f(x) = 5). The alternating dark-gray
and light-gray regions correspond to rounding intervals
that map to the same output value.
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2.6 Selected Identifying Traces
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Figure 2.17: Typical grayscale histograms before and after gamma correction. The upper half of the
image was left unmodified, whereas the lower half was subject to contrast reduction with γ = 0.6.
Gamma correction introduces characteristic peaks and gaps to the histogram that are not present
in the histogram of the upper part of the image. (The original image is part of the Dresden Image
Database [82].)

Because contrast enhancement modifies intensity values of individual pixels, it is not without
influence on the histogram of the resulting image. More specifically, Stamm and Liu [211]
observed that histograms of contrast-enhanced images exhibit characteristic peaks and gaps,
which are not present in histograms of typical original digital image. Figure 2.16 visualizes
how the combination of non-linearity and rounding in Equation (2.5) leads to these identifying
traces. The accompanying Figure 2.17—for the special case of gamma correction—compares
the histogram of an original image to the histogram of a contrast-enhanced image. Stamm and
Liu [212] further note that the position of peaks and gaps in the histogram depends on the
specific form of contrast enhancement, which allows to infer parameters of the mapping f(x).
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3 A Unified Digital Image Forensics Framework

This chapter devises a formal framework of digital image forensics. Its objective is to provide
a consistent terminology to foster a discussion of the general properties of image forensics
algorithms and counter-forensic techniques. To the best of our knowledge, the only similar
attempt to formalize theoretical underpinnings of certain aspects of digital image forensics
was made in a series of papers by Swaminathan et al. [218, 219, 220, 221, 222]. The authors
extensively studied the problem of component forensics, which they defined as the approach to
identify the « algorithms and parameters employed in the various components of the device
that was used in capturing the data » [224]. Here, we take a broader approach and do not limit
ourselves to the imaging device, but rather consider the complete image generation process
(see Section 3.5.2 for a discussion of relations to the work of Swaminathan et al.).

3.1 Image Generation Formalized

Digital image forensics exploits inherent characteristics of the image generation process and
their impact on the resulting image under analysis. For a formal treatment of image forensics
we thus have to define and characterize this process and its inputs (Section 3.1.1) before we
can reason about the notion of image authenticity (Section 3.1.2).

3.1.1 Image Generation Process

Digital images are projections of observations of the infinite set of all conceivable scenes S ∈ S
to vectors x ∈ X, X ≡X N , over a finite alphabet X of discrete symbols. An universal image
generation function helps us to conveniently formalize such projections.

Definition 1 | Image Generation Function. Function generate : S ×Θ→ Xmaps real-world
phenomena S ∈ S to digital images x ∈ X. The mapping is parametrized with a collection of
parameters θ ∈Θ.

The parameters include, inter alia, the perspective and the time of acquisition. They also reflect
different generation process characteristics, such as the choice of a particular acquisition device
and its configuration (e. g., settings, lenses) and control how the image is processed after
acquisition. In its simplest form, it is convenient to think of this image generation function as a
combination of both, initial image acquisition and subsequent post-processing.

Definition 2 | Image Acquisition and Image Processing. Function generate is a concatena-
tion of an image acquisition function acquire ∈A : S → X and an image processing function
process ∈ P : X+ → X, where, for a set P0 of elementary image processing primitives, P
is given by P = P +0 . Tuples (acquire,process) are elements of the function spaceA ×P
of combinations of all possible image acquisition methods and all possible image processing
operations, respectively. Their exact composition is defined by the parameters θ of generate.
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acquire ∈A
image

acquisition

process ∈ P
image

processing

generate(θ ∈Θ)
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x ∈ X
image
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analysis

knowledge of passive-blind forensic investigator

Figure 3.1: Universal image generation process in the context of passive–blind image forensics.

In the above definition, operator + is the ‘Kleene plus’, which for a given set X is defined as
X+ =

⋃∞
n=1Xn. Hence, function process may take an arbitrary positive number of digital

images as input. Set P0 ⊂P forms the basis for the construction of arbitrary image processing
operations. It can be interpreted as a collection of basic components, such as linear filtering
or compression. These image processing primitives are atomic in the sense that they cannot
be split up further into a sequence of independent sub-processes. Using this notation, a tuple
process= (process1, . . . ,processn) ∈ P n

0 means that, after initial acquisition, a series of n
independent processing steps leads to the final image x ∈ X.

The block diagram in Figure 3.1 illustrates our idea of an universal image generation process
(ignoring the possibility of multiple inputs to function process for the sake of simplicity),
which serves as a basis for the following considerations. Intuitively, function acquire directly
relates to the digital imaging device used to initially capture the image. Function process,
on the other hand, refers to all post-processing outside the device. However, we will see in
Section 3.3.3.3 that practical settings may require more flexible definitions whenever device-
internal processing occurs.

3.1.1.1 Special Case: Digital-to-Analog-to-Digital Conversion

To fit function generate into the notion of a more general image generation process introduced
informally in Figure 2.1, we also have to consider images that undergo a digital-to-analog
transformation, followed by a re-acquisition with a (possibly different) digital imaging device.

Definition 3 | Analog Output. Functions output ∈ O : X→SO map digital images to natural
phenomena. Set SO ⊂ S contains all conceivable natural phenomena that can result from
digital-to-analog conversions. Hence, tuples (output,acquire) are elements of the space
O ×A ⊂P0 of all possible digital-to-analog-to-digital conversions.

Observe that we consider the space O ×A as a subset of P0. This is in accordance to our
comment in Section 2.1.1 that re-digitization can be seen as a special form of post-processing.
Because function process now “hides” the possibly infinite digital-to-analog-to-digital loop
of Figure 2.1, instances of process can encompass sub-procedures that are itself an image
generation function according to Definitions 1 and 2.
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acquire ∈A

generate(θ ∈Θ)

S0 ∈ S x ∈ X

acquire1 ∈Aoutput1 ∈ O process1 ∈ Pprocess0 ∈ P S1 ∈ SO

generate(θ 1 ∈Θ)

process ∈ P

knowledge of passive-blind forensic investigator

Figure 3.2: Digital image generation with digital-to-analog-to-digital conversion. The general image
processing function process is a concatenation of several sub-procedures, including a nested instance
of generate.

Figure 3.2 gives a typical example, where the captured image is first fed into a function
process0 ∈ P before being transformed to the analog domain via function output1 ∈ O . The
so-generated natural phenomenon S1 ∈ SO is then re-digitized by function acquire1 ∈ A ,
which may be succeeded by a further processing step process1 ∈ P , leading to the final
image x ∈ X. Tuple (acquire1,process1) encapsulates a nested image generation function. Its
parameters θ 1 ∈Θ can be derived from the parameter set of the ‘parent’ process.

Note that the above framework generalizes to any desirable number of nested image generation
functions: both functions process0 and process1 can be further specified to include arbitrary
sub-processes. The forensic investigator, however, has generally only access to the result of the
overall process.

3.1.1.2 Special Instances of generate

There exist two parameter settings that deserve a special note. First, digital images not
necessarily undergo a processing step after initial acquisition with a digital imaging device.
Set P0 thus explicitly includes the identity function ⊥P : x 7→ x , i. e., no post-processing.

Definition 4 | Original and Processed Images. All non-nested digital image generation func-
tions28 (acquire,⊥P ) ∈A ×P produce original images as opposed to processed images that
result from generation functions (acquire,process) ∈A ×P \ {⊥P }.
Similarly, set A includes a pathologic function ⊥A , which refers to no acquisition with
an imaging device. This is particularly useful to differentiate between natural images and
computer-generated images.

28 The restriction to non-nested image generation functions is needed to rule out image modifications due to digital-
to-analog-to-digital conversions and optional prior processing, cf. Figure 3.2. In practice, this rather strict definition
is often replaced by one that accepts any acquired image as original.
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Definition 5 | Natural and Computer-Generated Images. All digital image generation func-
tions (acquire,process) ∈A \ {⊥A } ×P generate natural images as opposed to computer
generated images that result from generation functions (⊥A ,process) ∈A ×P . By definition,
computer-generated images are processed images.

Note that other research fields define natural images as images of ‘natural scenes’ and attempt
to narrow down characteristics of such phenomena and digital projections thereof [107, i. a.].
We refrain from unnecessarily restricting our framework to projections of particular types of
scenes (and the question of what is considered ‘natural’). Instead, we focus on particulars of
the image generation process.

3.1.2 Authenticity and Semantic Meaning of Digital Images

Two important attributes with regard to the image generation process are the notions of
authenticity and semantic meaning of digital images. Authentic here means that an image x is
a valid projection of the natural phenomenon S , whereas instances of process may impair its
authenticity. The question whether an image is authentic is deeply entangled with its semantic
meaning, which refers to the relationship between a depicted scene and the corresponding
natural phenomenon.

Before we give a formal definition of authenticity, we note that, intuitively, the projection of
one particular natural phenomenon S to an authentic image is not necessarily unique. More
specifically, there may exist a whole set of mappings that yield semantically equivalent images.
This means that each element in a set of semantically equivalent images x 1 6= x 2 6= · · · 6= x n
is a valid representation of the same realization of S , i. e., it shares the very same scene
characteristics with all other images of this set (cf. Section 2.1.4). As a typical example,
consider the case where the same scene is captured with many different digital cameras. While
each camera will give a slightly different result (depending on specific generation process
characteristics), all these images share the same scene characteristics and may be regarded as
authentic. Within certain limits also the change of resolution or lossy compression may retain
an image’s authenticity. In this sense, authenticity is an attribute of tuples (x ,θ , S) where S
must be the realization of S under parameters θ .

Because the association of semantic meaning requires (human) interpretation and is highly
dependent on the context in general, it is exceedingly difficult, if not impossible, to find a closed
formalization. Here, we work around this difficulty and assume that semantic equivalence is
measurable between images.

Definition 6 | Semantic Equivalence. Two images x 1, x 2 ∈ X are semantically equivalent if
there exists a scene S ∈ S such that

��semantic.dist(x 1, S)− semantic.dist(x 2, S)
��< d, (3.1)

where semantic.dist : X×S → R+ is a measure of the semantic distance between image x and
a scene S , and d is a given threshold.

The semantic resolution is a measure of the ability of function semantic.dist to differentiate
between very similar real-world phenomena for a fixed image x . It depends on the quality of
an image, or, more precisely, on the information conveyed in an image x about S . Threshold d
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x 1
◦
x 1

◦
x 2 x 2

Figure 3.3: High-quality images x 1 and x 2, together with respective low-quality quantized versions
◦
x 1

and
◦
x 2. Higher quality results in higher semantic resolution and vice versa. The original image is part

of the Dresden Image Database [82].

in the above definition has to be chosen commensurate with the semantic resolution of the
image with the lowest quality.

Figure 3.3 gives a practical example by depicting high-resolution images x 1 and x 2, accompa-
nied by respective low-resolution versions

◦
x 1 and

◦
x 2. A high visual quality of the first pair of

images makes it relatively save to conjecture that they are not semantically equivalent. As to
the pair of low-resolution images, strong quantization increases uncertainty and consequently,
a clear distinction with respect to the originating natural phenomenon cannot be drawn.
Also, with the quality of images

◦
x 1 and

◦
x 2 being inferior to that of image x 1, each of the

corresponding image pairs (x 1,
◦
x 1) and (x 1,

◦
x 2) could be likewise considered semantically

equivalent.

Equipped with the notion of semantic equivalence, we can finally define what qualifies an
image as authentic, i. e., which projections x are valid representations of reality.

Definition 7 | Authentic Images. All original natural images are authentic. Furthermore, for
a given authentic image x 1 = generate(S ,θ ), a processed version x 2 = process(x 1) is called
authentic if x 1 and x 2 are semantically equivalent with respect to S .

Definitions 4 and 7 reflect the subtle yet significant difference between processed and inauthen-
tic images. While each non-trivial instance of process damages the originality of an image, it
not necessarily impairs its authenticity. Whether or not a processed image will be considered
inauthentic ultimately depends on a given context and established habits, cf. Section 3.3.3. We
further point out that computer-generated images are not inauthentic by definition, because
function process can always be defined to replace a natural image with a computer-generated
version (or parts thereof). This is viable as long as synthesis algorithms are sophisticated
enough to generate semantically equivalent images. Similarly, images that underwent a digital-
to-analog-to-digital conversion may retain their authenticity under certain circumstances.
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Figure 3.4: Function spaceA ×P of conceivable combinations of image acquisition and processing
functions along with different classifications of the resulting digital images.

Our remarks are also reflected in Figure 3.4, which gives a schematic overview of the different
classifications of digital images that we encountered previously. Each of the three layers depicts
different partitions of the same function spaceA ×P , whereas four rectangular regions mark
the possible combinations of pathologic and non-trivial acquisition and processing functions,
respectively, cf. Definitions 4 and 5. The square in the lower left corner is left blank intentionally,
as processing functions (⊥A ,⊥P ) have no practical and meaningful equivalent.

3.2 Digital Image Forensics as a Classification Problem

Identifying traces of image generation processes reflect variations in the parameter settings θ
of generate, and specific characteristics that are common to images generated with a certain
subset Θ(k) ⊂ Θ of parameters. It is straightforward to model these variations in terms of
different classes of generation processes (Section 3.2.1), and we already encountered some
intuitive classifications in the previous section, cf. Figure 3.4. Forensic investigators then strive
to make a decision on the correct class an image under analysis (via its generation process)
belongs to (Section 3.2.2). Hence, digital image forensics is best described as a classification
problem.

3.2.1 Classes in Digital Image Forensics

Forensic investigators define classes to encapsulate parameter ranges of the function generate.
Often, the partition of the function space according to one of the three layers in Figure 3.4
will be too coarse, and the choice of the class space, denoted by C = {C0, . . . ,CK−1}, rather
depends on the concrete application. For example, manipulation detection is usually stated as
binary classification problem, i. e., |C | = 2, with one class C1 for authentic images and another
class C0 for inauthentic images. For source identification however, different classes represent
different imaging sources, e. g., specific device models or individual devices (typically |C | � 2).
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3.2 Digital Image Forensics as a Classification Problem

Definition 8 | Class. A class C ∈ C partitions the function spaceA ×P into two subspaces,
(A × P )(C) and (A × P )(6C), so that all images x (C) generated by (acquire,process) ∈
(A ×P )(C) share common identifying traces, x (C) ∈

¦
x
�� x = generate

�
θ ∈Θ(C)

�©
.

Convention. To keep notations simple, we use x (k) equivalent for x (Ck) when referring to
images of a particular class Ck ∈ C . Moreover, we write x (1) for authentic images and x (0) for
inauthentic images whenever the context prevents ambiguities and the class space contains
only these two classes.

Definitions 1–8 allow us to conveniently express various problems studied in the course of
digital image forensics in a unified formal framework (also see Section 2.4). The most relevant
problems are illustrated by the following examples.

Example 2 | Natural versus Computer-Generated Images. Class C1 of natural images contains all
instances of images x (1) generated by functions in the subspaceA \ {⊥A } ×P . Class C0 of
computer-generated images entails all instances of images x (0) generated by functions in the
subspace {⊥A } ×P .

Example 3 | Source Device Identification. Class Ck corresponds to acquisition with device k and
contains all instances of images x (k) generated by functions in the subspace Ak ×P . Set
Ak ⊂A entails all image acquisition functions of device k, where

⋂
kAk = ;.

The above example can be generalized to arbitrary levels of identification granularity to handle
device, model, or type identification, cf. Section 2.4.2.1.

Example 4 | Detection of Processing Artifacts. Class C1 of original images contains all instances
of images x (1) generated by functions in the subspaceA ×{⊥P }. Class C0 of processed images
entails all instances of images generated by functions in the subspaceA ×P \ {⊥P }. Specific
instances of this problem exploit missing or inconsistent device characteristics of acquisition
functions acquire ∈Ak ⊂A . This effectively restricts the analysis to subspacesAk ×P .

Example 5 | Printer Forensics. Class Ck corresponds to images that have been printed with
printer k and contains all instances of images x (k) generated by functions in the subspace
A × �P × (Ok ×A )

�
. Set (Ok ×A )⊂P0 refers to all digital-to-analog-to-digital conversions

with printer k.

The more general problem to detect re-captured images is a special case of Example 4. Here,
class C1 corresponds to generation functions in the subspace (O ×A )⊂P0.

Example 6 | Temporal Forensics. Class Ct1,t2
relates to images acquired in the time interval

t1 < t < t2. It contains all instances of images x (Ct1,t2 ) generated by functions in the subspace
At1,t2

×P where At1,t2
⊂ A is the set of all image acquisition functions invoked between

time t1 and t2.

Note that classes are intentionally defined to partition the parameter space of the image
generation process, not the image space. This is why the above examples refer to instances of
images, i. e., outputs of specific invocations of generate. As a result, a given image x ∈ X with
unknown provenance may be the outcome of different generation functions spanning more
than one class. Such ambiguities in this possibilistic framework can be resolved by using a
probabilistic perspective. More specifically, we interpret each class C to define a probability
space (Ω,PC), with Ω = X and PC being the class likelihood.
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Definition 9 | Class Likelihood. Function PC : 2X → [0,1] is the likelihood function that
returns the conditional probability PC

�
X0
�
= Pr

�
X0 |C

�
of observing a subset of images

X0 ⊆ X if their generation processes fall in the partition of class C. The probability depends on
the empirical distributions S ∼ S and (acquire,process)∼ (A ×P )(C).
Convention. To simplify notation, we use PC(x ) = Pr(x |C) equivalent for PC

�{x}�.

3.2.2 Decision Rules

Given a class space C , K = |C | ≥ 2, and an observed image x of unknown provenenance,
the forensic investigator strives to assign x to a class C∗ according to a decision rule, which is
defined to make the best possible decision with respect to some optimality criterion.

Definition 10 | Digital Image Forensics Algorithm. A digital image forensics algorithm is a
decision rule decide : X→C that assigns an image x ∈ X to a class C∗ ∈ C .

Function decide now partitions the image space into disjoint regions X =
⋃

kRk, with
Rk ∩Rl = ; for all k 6= l, such that all elements within a decision region Rk are assigned to
class Ck,

Rk = {x ∈ X | decide(x ) = Ck} . (3.2)

It is reasonable to assume that decisions are based on the the class probabilities conditional to
the observed image, Pr(Ck | x ), which reflect the probability that x exhibits identifying traces of
generation functions (acquire,process) ∈ (A ×P )(Ck). According to Bayes’ theorem, these
a posteriori probabilities can be obtained from the class likelihoods in Definition 9 as follows,

Pr(Ck | x ) =
Pr(x |Ck) ·Pr(Ck)∑

i Pr(x |Ci) ·Pr(Ci)
=

PCk
(x ) ·Pr(Ck)∑

i PCi
(x ) ·Pr(Ci)

, (3.3)

Pr(Ck) denotes the corresponding class prior probabilities, whereas
∑

k Pr(Ck) = 1. In gen-
eral, the larger is Pr(Ck | x ), the more evidence exists that x was generated by a function
(acquire,process) ∈ (A ×P )(Ck). The concrete transformation of posterior probabilities into
decisions depends on the algorithm decide and its decision rule.

3.2.2.1 Two-Class Decisions

We have already seen in the above examples in Section 3.2.1 that the class space in many
forensic problems is defined to comprise only two classes, C0 and C1. In fact, also most multi-
class forensic analysis are framed as (a series of) binary classification problem(s) by testing
each class against all others (“all against all”), or by testing one particular class against a joint
class that encompasses all remaining outcomes (“one against all”).

Tests for the presence of identifying traces of one particular class (assume Ck) will decide
C∗ = C|k−1| if x does not evince (enough of) these characteristics, k ∈ {0, 1}. A misclassification
occurs whenever an image x (k) is assigned to the wrong class C|k−1|, and forensic investigators
generally wish to operate algorithms decide that reduce the number of false decisions to a
minimum. In a two-class setting, we may encounter two different types of error. A miss refers
to an image x (k) that is element of decision region R|k−1|, whereas a false alarm occurs when
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Table 3.1: Possible outcomes and error probabilities of digital image forensics algorithms defined on a
binary class space C = {C0,C1}, when testing for identifying traces of class Ck, k ∈ {0,1}.

examination of images . . .

decision region x (k) x (|k−1|)

x ∈ Rk correct detection false alarm
1− PM PFA

x ∈ R|k−1| miss correct rejection
PM 1− PFA

an image x (|k−1|) is contained in decision region Rk, see also Table 3.1. The overall probability
of error is hence given by

Pe = Pr
�Ck
� ·
∑

x∈R|k−1|

PCk
(x ) + Pr

�C|k−1|
� ·
∑

x∈Rk

PC|k−1|(x )

= Pr
�Ck
� ·
∑
x∈X

PCk
(x ) ·δdecide(x ),C|k−1|

︸ ︷︷ ︸
PM

+ Pr
�C|k−1|

� ·
∑
x∈X

PC|k−1|(x ) ·δdecide(x ),Ck

︸ ︷︷ ︸
PFA

, (3.4)

where PM and PFA denote probability of miss and false alarm, respectively.

Clearly, a forensic investigator’s goal is now to find partitions Rk that minimize the probability
of error, or some related measure. Because any decision ultimately depends on the probabilities
Pr
�C0 | x

�
and Pr

�C1 | x
�
= 1−Pr

�C0 | x
�
, it is straightforward to specify algorithms decide

via a threshold parameter 0≤ τ′ ≤ 1:

decide(x ) =

(
Ck for Pr

�Ck | x
�≥ τ′

C|k−1| else.
(3.5)

Forensic investigators may impose additional constraints to ensure a reliable decision, for
example by requiring a minimum separability Psep between the classes,

2 ·Pr(C∗ | x )− 1≥ Psep . (3.6)

In classification theory, this is also known as the reject option [38, 14], and function decide

needs to be refined accordingly to return a special value for undecidable cases.

Because Pr
�C0 | x

�
+Pr

�C1 | x
�
= 1, the decision criterion in Equation (3.5) equates to

Pr
�Ck | x

�≥ τ′ ⇔ Pr
�Ck | x

�

Pr
�C|k−1| | x

� ≥ τ′

1−τ′ (3.7)

⇔ Λk(x ) =
PCk
(x )

PC|k−1|(x )
≥ τ′ ·Pr

�C|k−1|
�

(1−τ′) ·Pr
�Ck
� = τ′′ , (3.8)

or, for reasons of symmetry (log z =− log 1/z),

Pr
�Ck | x

�≥ τ′ ⇔ logΛk(x ) ≥ logτ′′ = τ , (3.9)
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Figure 3.5: A-posteriori probability Pr
�Ck | x

�
and log-likelihood ratio logΛk(x ) in digital im-
age forensics. Each threshold Pr

�Ck | x
� ≥ τ′

has an equivalent likelihood ratio test, with a
threshold parameter τ dependent on the prior
class probabilities. The shaded gray area is of
width 2 Psep and alludes to a potential reject op-
tion, Equation (3.6).

where Equation (3.8) follows directly from Equation (3.3), and Λk(x ) denotes the likelihood
ratio. Hence, Equations (3.5) to (3.8) suggest that comparing Pr

�Ck | x
�

against a threshold
τ′ is equivalent to a likelihood ratio test with threshold value τ and decision regions

Rk = {x | logΛk(x )≥ τ} and R|k−1| = {x | logΛk(x )< τ} . (3.10)

Figure 3.5 illustrates the relation between Pr
�Ck | x

�
and logΛk(x ) and exemplarily marks

decision thresholds for τ′ = 0.5. The graphs indicate that the evidence for the presence of
identifying traces of class Ck generally decreases as the likelihood ratio becomes smaller. Non-
uniform priors shift threshold τ by log

�
Pr
�C|k−1|

��
Pr
�Ck
��

and can hence either compensate
or amplify low evidence from Λk(x ).

The following three examples review fundamental decision rules [115] and give expressions
for τ′ and τ, respectively.

Example 7 | Minimum Probability of Error. It follows from Bayes’ theorem, Equation (3.3),
and Pr(Ck) ·PCk

(x ) ∝ Pr(Ck | x ) that the probability of error is minimized by a decision rule
that chooses the class with maximum a posteriori probability. The corresponding threshold in
Equations (3.5) and (3.7) is τ′MAP = 0.5, and therefore (see also Figure 3.5)

decideMAP(x ) = Ck ⇔ logΛk(x )≥ log
Pr
�C|k−1|

�

Pr
�Ck
� = τMAP . (3.11)

The subscript ‘MAP’ hints to the maximum a posteriori rule.

Because it is generally not possible to design algorithms decide to reduce both PM and PFA at
the same time, the minimization of Equation (3.4) is often subject to additional constraints.
Such constraints may arise from situations where certain misclassifications are considered more
critical than others, because of the higher cost associated with this type of error (for instance in
Example 4, where a false detection of processing artifacts may lead to further time-consuming
but unnecessary investigations of the image’s authenticity).

Example 8 | Minimum Bayes Risk. Denoting γ(l 7→k) ≥ 0 as the cost for assigning an image x (l)

to class Ck, it is then the goal to minimize the average cost over all decisions. This is also
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known as the Bayes risk, R,

R=
1∑

k=0

1∑
l=0

Pr
�Cl
�∑
x∈Rk

PCl
(x ) · γ(l 7→k) . (3.12)

It follows from Bayes’ theorem, that Equation (3.12) is minimized by assigning x to the class
Ck for which the quantity

∑
l Pr
�Cl | x

� · γ(l 7→k) is minimal. Under the reasonable assumption
that correct decisions do not cause any cost, γ(k 7→k) = 0, this is equivalent to

decideMBR(x ) = Ck ⇔ Pr
�Ck | x

� · γ(k 7→|k−1|) ≥ Pr
�C|k−1| | x

� · γ(|k−1|7→k) (3.13)

⇔ Pr
�Ck | x

�≥ γ(|k−1|7→k)

γ(|k−1|7→k)+ γ(k 7→|k−1|) = τ
′
MBR (3.14)

⇔ logΛk(x )≥ log
Pr
�C|k−1|

� · γ(|k−1|7→k)

Pr
�Ck
� · γ(k 7→|k−1|) = τMBR , (3.15)

where the subscript ‘MBR’ indicates the minimum Bayes risk decision rule. For equal costs
γ(k 7→|k−1|) = γ(|k−1|7→k) minimizing R reduces to minimizing the probability of error.

The above example illustrates that the necessary evidence for the presence of identifying
traces of generation functions (acquire,process) ∈ (A ×P )(Ck) increases with the relative
cost of misclassifications x (|k−1|) 7→ Ck. Threshold τ′MBR tends to 1 as false alarms become
unaffordable (γ(|k−1|7→k)→∞) and misses are comparably less critical.

On a more general level, the Neyman-Pearson lemma [172] implies for any given probability
of false alarm that thresholds values τ and τ′ exist, which reduce the probability of miss to a
minimum.

Example 9 | Neyman-Pearson. When imposing a bound on the probability of false alarm,
PFA ≤ α, forensic investigators can minimize the probability of miss, PM D(α), by deciding
C∗ = Ck if the likelihood ratio Λk is larger than a threshold τ′′NP(α). This threshold can be found
from

α=
∑

{x | Λk(x )>τ′′NP(α)}
PC|k−1|(x ) . (3.16)

Hence, the Neyman-Pearson (NP) decision rule with PFA ≤ α is given by

decideNP,α(x ) = Ck ⇔ logΛk(x )> logτ′′NP(α) = τNP(α) (3.17)

⇔ Pr
�Ck | x

�
>

τ′′NP(α)
Pr(C|k−1|)
Pr(Ck)

+τ′′NP(α)
= τ′NP(α) , (3.18)

where Equation (3.18) follows from Equation (3.8). In the classical Neyman-Pearson setting,
no assumptions on prior probabilities are made, i. e., Pr(C0) = Pr(C1). Algorithms decideNP,α
then minimize the probability of error conditional to the constraint PFA ≤ α.

Clearly, the decision rules in Examples 8 and 9 can be transformed into each other by setting
parameters γ(l 7→k) and α appropriately. In general, small values α resemble high costs γ(|k−1|7→k).
Since these parameters are under full control of the forensic investigator, it is furthermore
always possible to map problems with non-uniform class priors to equivalent thresholds that
are independent of Pr(Ck) (this corresponds to the black curve in Figure 3.5).
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3.2.2.2 ε-Undecidability

Equations (3.7) to (3.9) suggest that the decidability of forensic problems ultimately depends
on the mutual similarity of the corresponding class likelihoods PC0

and PC1
, respectively. The

more similar these probability distributions are, the more difficult it is to distinguish between
samples of them. In the extreme case, when both distributions coincide, i. e., logΛ(x ) = 0 for
all x ∈ X, the forensic investigator cannot learn anything from observing x .

By inspecting its expected value over all realizations x ∈ X, the log-likelihood ratio hence
reveals insight into the average decidability of digital image forensics problems. This expected
value is is also known as Kullback–Leibler divergence [136, 42], DKL, and it is given by

EPCk

�
logΛk(x )

�
=
∑
x∈X

PCk
(x ) log

PCk
(x )

PC|k−1|(x )
≡DKL

�
PCk

,PC|k−1|

�
. (3.19)

Kullback–Leibler divergence is a fundamental measure of how different two distributions are.
It is non-negative, DKL(PCk

,PC|k−1|)≥ 0, with equality if and only if the two distributions are
identical, and generally asymmetric, DKL(PC0

,PC1
) 6= DKL(PC1

,PC0
). A zero KL divergence

implies that forensic investigators cannot distinguish between instances of images of either class.
In other words, the underlying classification problem becomes only decidable via a decision
bias, for instance in terms of non-uniform costs γ(l 7→k) and/or prior class probabilities.

This leads us to the notion of ε-undecidability of a forensic two-class problem and its implica-
tions on the error probabilities of algorithms decide.

Definition 11 | ε-Undecidability. A forensic problem on a binary class space C = �C0,C1
	

is
ε-undecidable if DKL(PCk

,PC|k−1|)≤ ε for each k ∈ {0,1}.
Note the similarity of Definition 11 with the notion of ε-secure steganography [22]. Also in
digital image forensics, ε bounds the error probabilities of algorithms decide from below via
the deterministic processing theorem. More specifically, let ePCk

and ePC|k−1| denote two binary
probability mass functions, which return the probabilities of possible outcomes of decide
according to the columns of Table 3.1, i. e.,

ePCk
=
�
Pr
�
decide= C|k−1| |Ck

�
,Pr
�
decide= Ck |Ck

��
=
�

PM , 1− PM
�

, (3.20)

ePC|k−1| =
�
Pr
�
decide= C|k−1| |C|k−1|

�
,Pr
�
decide= Ck |C|k−1|

��
=
�
1− PFA, PFA

�
. (3.21)

Each of the above distributions corresponds to the (hypothetical) case, where decide is fed
exclusively instances of images of one particular class Ck or C|k−1|, respectively. Because the
Kullback–Leibler divergence between two probability distributions over X cannot increase
through a measurable map x 7→ decide(x ) = C∗ [136], we have

dKL
�

PFA, PM D
�≡DKL

� ePC|k−1| ,
ePCk

�
≤DKL

�
PC|k−1| ,PCk

�
, (3.22)

where dKL(u, v) denotes the Kullback–Leibler divergence between two binary probability
distributions (1− u, u) and (v, 1− v), respectively [22].29 It follows for ε-undecidable image

29 Note that, while DKL

�PC|k−1| ,PCk

�
= 0 implies that the underlying forensic problem is undecidable for all possible

algorithms decide, DKL

� ePC|k−1| ,
ePCk

�
= 0 only refers to undecidability with one specific decision rule.
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Figure 3.6: Kullback–Leibler divergence upper
bounds on the probability of correct detection PD as
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forensics problems that the error probabilities of arbitrary digital image forensics algorithms
are bounded by

0≤ (1− PFA) · log
1− PFA

PM
+ PFA · log

PFA

1− PM
≤ ε . (3.23)

Equation (3.23) now allows to find the smallest possible probability of missed detection that
a forensic algorithm can achieve when examining an ε-undecidable problem with a fixed
maximum probability of false alarm, 0≤ PFA ≤ 1,

PM
�

PFA
�
= arg min

PM∈[0,1]

¦
PM

�� dKL
�

PFA, PM
�≤ ε

©
, (3.24)

where we make use of an equivalent result for steganographic security [66, p. 84].

Figure 3.6 illustrates the resulting upper bounds on the probability of correct detection, PD = 1− PM ,
as a function of PFA for various values of ε. These receiver-operating-characteristic (ROC) curves
are particularly indicative for the theoretical limits of Kullback–Leibler divergence. Indistin-
guishable class likelihoods (ε = 0) imply that forensic investigators cannot distinguish between
samples of either distribution and hence result in a curve PD = PFA. A maximum divergence
(ε → ∞) allows perfect separation, i. e., PD = 1 independent of PFA. In general, it is more
likely to correctly identify instances of images of class Ck at a low probability of false alarms
as divergence increases. In very restrictive settings that do not permit any false alarms, the
minimum probability of miss decays exponentially with ε, PM (PFA = 0)≥ exp(−ε).
For decisions according to the maximum a-posteriori rule (Example 7), lower bounds on
the probability of error can be found from Toussaint’s J-divergence [226], DπJ . Denoting
(π, 1−π) = (Pr(C0),Pr(C1)), this measure generalizes Kullback and Leibler’s [136] symmetric
J-divergence,

DπJ
�
PC0

,PC1

�
=
∑
x∈X

�
π ·PC0

(x )− (1−π) ·PC1
(x )
�

log
π ·PC0

(x )

(1−π) ·PC1
(x )

(3.25)

= π ·DKL

�
PC0

,PC1

�
+ (1−π) ·DKL

�
PC1

,PC0

�
+ dKL (π,π) . (3.26)

51



3 A Unified Digital Image Forensics Framework

0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

π= 0.1

π= 0.2

π= 0.5

ε

P e

Figure 3.7: J-divergence lower bounds on the prob-
ability of error Pe for algorithms decideMAP when
examining ε-undecidable problems. Curves for
various class prior probabilities π = Pr(C0), π ∈
{0.5,0.2, 0.1}.

DπJ is shown in [226] to bound the probability of error of MAP decision rules by

Pe ≥ 0.5− 0.5 ·
q

1− 4 exp
�
−2 H(π, 1−π)−DπJ

�PC0
,PC1

��
, (3.27)

where H denotes the Shannon entropy. It further follows from Equation (3.26) and Definition 11
that ε-undecidable problems are characterized by

DπJ
�
PC0

,PC1

�
≤ ε+ dKL(π,π) . (3.28)

Combining Equations (3.27) and (3.28), we obtain the following bound on the performance of
algorithms decideMAP :

Pe ≥ 0.5− 0.5 ·
p

1− 4π(1−π) · exp(−ε) . (3.29)

Figure 3.7 illustrates this bound for different class prior probabilities and indicates that priors
with π 6= 0.5 reduce the probability of error. The curves further suggest that non-uniform
priors are particularly influential when the corresponding class likelihoods are highly similar
(ε→ 0), which conforms to our earlier discussion on page 48.

We finally note that Toussaint’s bound can be generalized to K > 2 classes [227]. Moreover, also
upper bounds on Pe exist, most prominently the Chernoff bound [98] and the Bhattacharyya
bound [113]. However, as shown by van Ness [171], non-trivial upper bounds in terms of
DKL

�PCk
,PC|k−1|

�
cannot exist.

3.2.2.3 Multiple Images

So far, we have considered the forensic examination of single images. In certain situations,
forensic investigators may be in the position to analyze a set of (presumably) independent
images Xn = {x 0, . . . , x n−1}, which (are assumed to) result from the same set of generation
functions (A ×P )(C). Again, it is then the goal to assign Xn to a class C∗ according to some
optimality criterion, and the above decision rules basically apply in a straightforward manner
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by evaluating PC(Xn) instead. A typical application is source device identification of a batch of
related images [3].30

Intuitively, we expect that forensic investigators will make more reliable decisions as the number
of available images, n, increases. For the Neyman-Pearson decision rule and independent
samples x i ∼ PC(x ), this behavior is captured by the Chernoff-Stein Lemma [42, ch. 11.8].
The lemma states that, for any fixed probability of false alarm, PFA ≤ α, the best achievable
probability of missed detection, PM (α), decays exponentially with n, i. e.,

lim
n→∞

1

n
log PM (α) =−DKL

�
PC|k−1| ,PCk

�
. (3.30)

Observe that, via Kullback–Leibler divergence, the above equation establishes a direct link to
the notion of ε-reliability. A similar result exists for MAP decision rules [42, ch. 11.9],

lim
n→∞

1

n
log Pe =−C

�
PCk

,PC|k−1|

�
, (3.31)

where C(PCk
,PC|k−1|) is the Chernoff information,

C
�
Pk,P|k−1|

�
= inf
0<λ<1

log
∑
x∈X

PλCk
(x ) ·P1−λ

C|k−1|
(x ) . (3.32)

As pointed out by Cover and Thomas [42, pp. 388–389], the asymptotic bound in Equa-
tion (3.31) does not depend on the class prior probabilities, i. e., the effect of prior knowledge
washes out for large sample sizes for strictly positive Chernoff information.

3.3 Practical Considerations

The theory in Sections 3.1 and 3.2 provides a framework general enough to cover and discuss
a wide range of questions regarding digital image forensics. Unfortunately, only a few of the
definitions are directly applicable in practice. Knowledge of the class likelihoods PC(x ) is the
key to optimal decisions conditional on the class prior probabilities Pr(C). Both quantities are
however hardly ever available in practical settings. Insufficient knowledge of prior probabilities
is less problematic:31 the Neyman-Pearson lemma allows to make optimal decisions with respect
to a chosen probability of false alarm independent of prior probabilities, see Equation (3.17).
The main difficulty in applying the above equations remains the absence of knowledge about
the conditional probability distributions PC(x ), which are given only empirically and are of
intractable dimensionality (Section 3.3.1). Forensic investigators hence need to find models of
digital images (Section 3.3.2). Moreover, the question whether or not an image is authentic is
hard to evaluate in practice because of the empirical nature of semantic equivalence and the
high complexity of image generation functions generate (Section 3.3.3).

30 Also certain forensic analyses of digital video footage can be interpreted as examination of multiple images of the
same source. However, due to temporal correlation, individual frames are typically not independent, which can
complicate a formal treatment. On the other hand, it has already been demonstrated that these dependencies
provide useful information for forensic purposes [232, 233, 101, i. a.]

31 Reasonable (or conservative) assumptions on Pr(C) may exist when the class space reflects different (types of)
imaging devices.
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3.3.1 Epistemic Bounds

We follow Böhme [18, pp. 83–86], who transferred widely accepted epistemological paradigms
to the context of steganography and steganalysis and argued that distributions PC(x ) are
ultimately incognizable. Although the support of PC(x ) is finite, these class likelihoods return
probability values of projections of real-world phenomena S ∈ S , and S has infinite support
(so has the parameter space Θ), cf. Definitions 1 and 9. Because natural phenomena in the
real world can never be fully known but merely approximated by consequent falsification and
refinement of theories about the real world, complete knowledge of PC(x ) remains inaccessible
to the forensic investigator.

But even after the transformation to the finite space X, the support of PC(x ) is too large and
too heterogeneous to efficiently estimate distributions by sampling. We can ignore this for a
moment and assume that original (or authentic) images can efficiently be sampled.32 But then
there remains the difficulty of sampling inauthentic images. Generating good counterfeits is a
time-consuming manual task that depends a lot on the counterfeiters’ creativity and it is highly
adaptive to the original image. This process is generally very hard to automate, although
promising semi-automatic approaches have been proposed recently [140, 50].

The high cost of sampling is also reflected by the quality and size of available datasets that
have been compiled in controlled environments for the purpose of image forensics research.
Typical inauthentic images are obtained by copying patches from within the same or other
images, without sophisticated post-processing and without adaptivity to the depicted scene
[175, 102]. Only few databases provide more realistic forgeries [36, 39], however without
resolving the general trade-off between quality and quantity.33

3.3.2 Image Models

To reduce complexity and avoid the epistemic obstacles, all practical digital image forensics
algorithms make use of models of digital images. Such models can be seen as a dimensionality
reduction by projecting the high-dimensional image space X to a much smaller and more
tractable subspace, which is usually referred to as feature space.

Definition 12 | Feature Representation. Digital images x ∈ X≡X N are mapped to feature
vectors y ∈ Y ≡ Y N ′ by a function project : X → Y. For a given class C ∈ C , the class
likelihood over the feature space Y, Pproject

C (y), is given via the class likelihood PC(x ):

Pproject
C (y) =

∑

{x | x=project−1(y)}
PC(x ) . (3.33)

32 In practice, it should be distinguished between large-scale sampling from (a moderate number of) particular devices
or all possible (types of) devices. The former is to a certain degree feasible [82], but it is unrealistic to assume
that forensic investigators are granted access to arbitrary instances of acquire. This is of particular relevance
to the identification of specific source devices, where images of unknown devices may occur with non-negligible
probability.

33 Ng et al. [181, p. 402] suspected that the main reason for the lack of realistic inauthentic test images lies in the
inferior sophistication of forensic algorithms. We respond that imperfect algorithms should not hinder forensic
investigators to compile more realistic datasets. It is ultimately the only way to gain knowledge about distributions
PC(x ), which in turn will eventually advance forensic algorithms.
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Convention. To simplify notation, we use PC(y) as a shortcut to Pproject
C (y), whenever the

context prevents ambiguities.

In the simplest case, function project maps images x to scalar values y , i. e., Y= R. Typical
examples are the energy of high frequency components of pixel histograms in the detection of
contrast enhancement [211], or the ratio of noise energies in horizontal and vertical direction
in the distinction between images from scanners and cameras [23]. We note that a projection
to the feature space Y not necessarily means that N ′ � N . For instance, most PRNU-based
methods project images to noise vectors y = (y1, . . . , yN ), which are of the same length as the
images itself [65].

The projection of images to a feature space does generally not relieve forensic investigators of
their epistemic bounds: distributions PC(y), via the class likelihoods PC(x ), still depend on
the incognizable distribution S ∼ S , cf. Equation (3.33). However, an appropriate choice of
functions project allows to formulate reasonable and mathematically tractable assumptions
on the distribution of images in the feature space. A common assumption for noise vectors, for
instance, is the statistical independence of their elements. Due to the high dimensionality and
complexity of digital images, such assumptions are typically not viable for distributions PC(x )
directly. Böhme [18, p. 85] calls such image models hypotheses on PC(x ), because assumptions
on the distribution of feature vectors, PC(y), indirectly translate to assumptions on the class
likelihoods over X.

Example 10 | PRNU-based Device Identification (see Section 2.6.1.2). Images are mapped to the
feature space by extracting a noise residual, y = x − denoise(x ), where denoise : X→ RN is a
denoising filter. Classes Ck are defined to entail instances of images of particular devices k, cf.
Example 3. In testing whether an image was captured with device k, individual noise samples
yi are modeled by a Gaussian distribution, and it is assumed that a common PRNU term xκ(k)

controls the distribution PCk
, i. e., PCk

(yi) = N�x iκ
(k)
i ,σ2

i

�
. Images of devices l 6= k do not

exhibit this identifying characteristic, and hence PCl
(yi) =N (0,σ2

i ).

Example 11 | Copy–Move Detection (see Section 2.6.2.1). Small blocks of the image are mapped
to a feature representation that is robust against noise and other distortions. All transformed
blocks are then compared to each other, leading to a low-resolution detection map y , which
marks pairs of (near-)duplicate blocks. The implicit model assumes that connected regions of
identical, but not constant, pixel values are very unlikely to occur in original images.

The two examples highlight the great variety in ways of specifying image models. While the
former builds on rigorous mathematical modeling, the latter is implicit and of rather informal
kind. In general, modeling images in low-dimensional feature spaces is effective as long as
the mismatch with the real world is not substantial. By accepting the general need for image
models, it is clear that a forensic algorithm can only be as good as the model it employs. The
better the underlying model can explain and predict observed samples of a particular class, the
more confident a forensic investigator can base her decisions on it.

Depending on the available knowledge of the distribution of samples y in the feature space,
different options exist for incorporating these models into the decision stage. More generally,
we can identify the following approaches to formulate decision rules in terms of image models
[14, p. 43]:
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|1| Generative models are explicit models of distributions PC(y).34 If available for all classes
Ck ∈ C , this type of model is generally preferable, as it establishes a direct link to the
class likelihoods PC(x ). In the theory of Section 3.2.2, intractable distributions over X are
then replaced by distributions over the codomain Y, which allows to find optimal decision
rules with respect to the model.

|2| Instead of modeling PC(y) directly, discriminative models make implicit assumptions on
the class likelihoods via models of the posterior Pr(C | y). It is then possible to solve
the decision problem in Equation (3.5) by imposing appropriate thresholds on Pr(C | y)
directly. While this approach is in general not as universal as the explicit modeling of
PC(y) (it is always possible to obtain posterior probabilities from the class likelihoods via
Bayes’ theorem), it has particular merits when reasonable assumptions on (some of the)
class likelihoods are not available.

|3| An even simpler approach employs discriminant functions, which directly map each sample
y to a class Ck ∈ C . Here, no probabilities are involved, and models of the distribution
of feature values are again implicit only. This approach is particularly attractive when
forensic investigators are only interested in ‘hard’ decisions.

We note that even after projection to the feature space, explicit models of class likelihoods
often still do not exist. As a result, only few forensic methods make use of generative
models (most prominently, device identification via sensor noise, cf. Example 10). The vast
majority of algorithms employs discriminant functions in the feature space to assign images
to particular classes. Projections to one-dimensional feature values are usually accompanied
by empirical decision thresholds [23, 211, i. a.], whereas feature representations of higher
dimensionality are mostly fed into support vector machines [41] to find the maximum margin
decision boundary [28, 85, i. a.]. To the best of our knowledge, discriminative models have not
found direct application in the context of digital image forensics yet. Nevertheless, it seems
straightforward to extend simple discriminant functions to return soft probability values, which
may support forensic investigators in making informed decisions. Swaminathan et al.’s [220]
use of probabilistic support vector machines [192, 238] to obtain ‘confidence scores’ is a step
in this direction.35 More sophisticated methods, which do not rely on a proxy discriminant
function, include for instance the relevance vector machine [225].

Independent of how complex image models are and how they are eventually incorporated into
the decision stage, all good models have in common that they are ideally inferred from and/or
validated against a large number of representative samples. If image models are inferred from
observed samples, training sets of limited size and lacking heterogeneity are likely to result in
models that do not generalize well to images from other sources. Similarly, explicit (possibly
analytical) assumptions on class-specific characteristics of feature vectors need to be tested
against a representative validation set to rule out a mismatch with the real world. These points

34 The term ‘generative’ reflects the possibility to sample from PC(y) [14].
35 It is worth mentioning that a considerable portion of practical image forensics methods does not output decision

scores at all. This mainly concerns methods designed to uncover local manipulations by analyzing images on a
block-by-block basis (for instance copy-move detectors, cf. Example 11). The standard output is a detection map y
that points to conspicuous image regions, and decisions typically require human interpretation (see Figure 2.14 for
a specific example). It remains unclear whether this raw presentation of detection results is driven by the lack of
reasonable models of y , or by overly simplistic assumptions thereon. While one could argue that the existence of a
single marked block is sufficient to flag the whole image as inauthentic, this approach would ignore important (yet
more complex) available information, such as size, shape and connectedness of the conspicuous regions.
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emphasizes the major issues that arise from the high cost of sampling inauthentic images,
cf. Section 3.3.1.

3.3.3 Blurred Notion of Authenticity

3.3.3.1 Measurement of Semantic Equivalence

Epistemic bounds not only limit the forensic investigator’s knowledge of class likelihoods, but
they further directly affect the assessment of image authenticity. While image models are
generally a viable option to resolve the former issue, the direct dependence on S prevents a
literal application of Equation (3.1) to test for the semantic equivalence of digital images x 1
and x 2 in Definition 7. A possible strategy to work around this difficulty is to interpret function
semantic.dist as a conditional probability distribution PC(x 1 |S), and to assume that one of
the images is a satisfactory representation of natural phenomenon S . It is then possible to link
function semantic.dist to assumptions on the distribution of images by finding a model for
distribution PC(x 2 | x 1). This procedure is apparently only feasible if the model is sensitive
enough to capture semantic differences between the images, and it remains an open question
whether such models exist. A very coarse approximation of PC(x 2 | x 1) may be obtained by
using a (much simpler) function dist : X×X→ R+ to compute differences between x 1 and x 2
on sample-level, and to assume that large differences reflect low probabilities,

��semantic.dist(x 1, S)− semantic.dist(x 2, S)
��∝ dist(x 1, x 2) (3.34)

Among the simplest distance functions of this kind is the peak-signal-to-noise ratio (PSNR),

distPSNR(x 1, x 2) = 10 · log10



|x 1| ·

�
2`− 1

�2

∑
i

�
(x1)i − (x2)i

�2


 , (3.35)

which is measured in decibel (dB). We note that critics have expressed concern that PSNR and
related pixel-wise distortion metrics [51] do not reflect very well the way that human visual
systems (HVS) perceive images [80, 234]. As a result, a plethora of HVS-inspired alternative
distortion measures have been proposed, with the structural similarity (SSIM) index being one
of the most promising approaches [235].

3.3.3.2 Legitimate Post-Processing

A further obstacle to the assessment of image authenticity lies in the absence of knowledge
of the original image x (1). Without access to S and x (1), forensic investigators can ultimately
never know whether arbitrary images x are authentic or not. Consequently, they can only
resort to inference on the parameters of function generate and apply heuristics that determine
which types of processing preserve the semantic meaning of digital images. In practical settings
it is hence more appropriate to speak of plausible images instead.

While it is tempting to deny authenticity to every processed image per se, this simplification is
too narrow for many realistic applications. More likely, there will be a subset Plegitimate ⊂P
of legitimate processing operations which do not impair the authenticity of an image, see also
Figure 3.4. This subset (and thus the notion of authenticity/plausibility) certainly depends on
the context. For instance, it is common practice to downscale and compress digital images with
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JPEG prior to publication on the Internet [216]. Official crime scene photographs, by contrast,
must not be exposed to any quality reduction. Instead, basic color enhancement operations
may be accepted or even required [202]. Special codes of conduct exist that specify what is
considered legitimate post-processing for a number of scientific journals [205, 186, 44].

Practical investigations into the authenticity of digital images will hence ultimately deal with
three categories of digital images, namely

|1| original images, where process can be nothing but the identity function ⊥P ,
|2| plausible images, which have been subject to legitimate post-processing process ∈

Plegitimate, and
|3| manipulated images, for processing with all other elements of P .

It is then the forensic investigator’s goal to distinguish between instances of images of the
three categories, and in particular between those that underwent legitimate and illegitimate
processing (categories 2 and 3). Context and established habits define whether the first two
categories or just the first category shall be considered as authentic.

Example 12 | Context-Dependent Legitimacy. Imagine a case where a judge who has to rule on a
traffic accident may consider JPEG-compressed images as authentic if they have been mailed
to the insurance company via email. Since the authenticity (and in particular the semantic
integrity) of JPEG-compressed images is more difficult to prove than of never-compressed
images (cf. Figure 3.3), a party in doubt may present (or demand) the original raw files. The
claim “these are the original raw files” immediately alters the notion of authenticity. JPEG
artifacts in the presumably never-compressed files would be an indication of inauthenticity
and raise suspicion that the images are counterfeits.

Remark that technically, this claim imposes an exogenous condition on the class likelihood
PC(x | claim). This way, contextual knowledge can be incorporated in the formal framework
and sharpen the notion of plausibility with probability distributions.

3.3.3.3 Device-Internal Processing

The definition of authenticity is deeply entangled with the question of what constitutes an
acquisition device and thus the separation between functions acquire and process. Common
sense suggests to equate function acquire with imaging devices and then strictly apply Defini-
tion 7: all original images captured with these devices are authentic. However, considering the
sophistication and complexity of modern imaging devices, the situation is not as easy.

Increasingly, such post-processing and image enhancement becomes integral part to the
internal imaging pipeline and blurs the distinction between functions acquire and process.
The situation is even more complex when consumers are in the position to actively modify and
extend the firmware of their devices.36 Eventually, forensic investigators have to accept that
device-internal processing will often be hardly distinguishable from post-processing outside
the device and hence raises the uncertainty of forensic decisions.

36 The Canon Hack Development Kit, for instance, allows to run virtually arbitrary image processing routines inside
most modern Canon digital cameras, http://chdk.wikia.com/wiki/CHDK .
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3.4 Counter-Forensics

A thorough assessment of the reliability of digital image forensics algorithms requires to
anticipate strategies of potential counterfeiters. Whenever an image is manipulated purposely
(and with the intention to make it public to a certain group of entities), the counterfeiter will
have at least a rough working definition of what is considered plausible and will try to conform
to these expectations. Because knowledge of identifying traces of image generation functions
is in general not limited to the forensic investigator, informed counterfeiters will eventually
exploit their own knowledge (or, to be more precise: assumptions) to deceive forensic analyses,
i. e., to influence the outcomes of digital image forensics algorithms (Section 3.4.1). For a
characterization of such attacks it is important to distinguish between the robustness and the
security of digital image forensics algorithms, respectively (Section 3.4.2). Because we expect
counterfeiters to possess different skills and to have access to different resources, it seems
feasible to adopt the notion of adversary models to study the reliability of image forensics
algorithms conditional to those expectations (Section 3.4.3) and to the potential strategies that
counterfeiters can pursue (Section 3.4.4).

3.4.1 Formal Definition

For a given image x 1 = x (k)1 , counter-forensics aims at preventing the assignment to the image’s
class Ck. By suppressing or synthesizing identifying traces, the counterfeiter creates a counterfeit

x 2 = x (
l̃)

2 with the intention to let it appear like a plausible member of an alternative class
Cl ∈ C , l 6= k, when presented to the forensic invesitgator’s function decide.

Convention. We use the superscript notation (l̃) to denote the intended class change.

Definition 13 | Counter-Forensic Attack. A digital image forensics algorithm decide is vul-
nerable to a counter-forensic attack if for a given image x 1 = generate(θ )

∃attack ∈ P , x 2 = attack(x 1) so that decide
�
x 2
� 6= decide(x 1) (3.36)

subject to the constraints

|1| x 1 and x 2 are semantically equivalent (semantic constraint), and
|2| the probability of finding attack for a given x 1 is not negligible within a given complexity

bound (computational constraint).

The following examples illustrate how this definition matches existing counter-forensic strate-
gies (cf. Table 2.2).

Example 13 | Hiding Traces of Image Manipulation. A typical counter-forensic image manipula-
tion of an authentic image x (1)1 will involve two steps, first a transformation x (1)1 7→ x (0)2 which
changes the semantic according to the counterfeiter’s intention, and second a counter-forensic

attack x (0)2 7→ x (1̃)3 to pretend authenticity of the counterfeit, i. e., decide(x (1̃)3 ) = C1. Images

x (0)2 and x (1̃)3 are semantically equivalent.

Example 14 | Impeding Device Identification. Counterfeiting the source of an authentic image x 1
involves a single application of a counter-forensic attack x 1 7→ x 2, possibly with the additional

requirement that a specific target class Ctarget
!
= decide(x 2) 6= decide(x 1) is pretended.
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While Definition 13 is formulated for a specific choice of function decide, it is also meaningful
to study the reliability of a counter-forensic attack, which addresses identifying traces of original
class C, against all possible decision rules on a given class space C . From the counterfeiter’s
point view, every forensic analysis can be reduced to a two-class decision problem on a class
space C ′ = {C′0,C′1} by defining classes C′1 and C′0 ≡ C1̃ to represent the set of target (i. e.,
admissible) generation functions and attacks, respectively:

(A ×P )(C′0) = (A ×P )(C)× {attack} (3.37)

(A ×P )(C′1) ⊆ (A ×P )(6C) . (3.38)

The concrete definition of class C′1 depends on the counterfeiter’s agenda. It may correspond to
a combination of several classes (if the goal is only to suppress identifying traces of class C) or
to a particular class Ctarget (for instance to pretend a specific source device, cf. Example 14).
Careful counterfeiters in general strive to design their attacks so that samples of both classes C′0
and C′1 are indistinguishable, and counter-forensic attacks are clearly the more reliable the more
similar the corresponding class likelihoods PC′0(x ) and PC′1(x ) are. Hence, the reliability of a
counter-forensic attack directly relates to the decidability of the forensic problem to distinguish
between the two distributions.

Definition 14 | ε-Reliability. A counter-forensic attack, which addresses identifying traces
of original class C ∈ C , is ε-reliable against all digital image forensics algorithms on C if
the forensic investigator’s decision problem to distinguish between samples x (C

′
0) ∼ PC′0 and

x (C
′
1) ∼ PC′1 is ε-undecidable.

For the special case ε = 0, Definition 11 implies that authentic and counterfeit images are
drawn from the same distribution and the forensic investigator cannot gain any information
from the analysis of x . Inspired by the related notion of perfect security of steganographic
schemes [22, 66], we call such counter-forensic attacks perfectly reliable.

3.4.2 Robustness and Security of Image Forensics Algorithms

The design of counter-forensic techniques is not only of practical interest to the counterfeiter
itself. It rather also has a strong academic perspective, as it allows to study the security
of forensic algorithms decide. Before we define what exactly we mean by security, it is
useful to come back to the distinction between legitimate and illegitimate post-processing (see
Section 3.3.3.2) and thereby to introduce the notion of robustness first.

3.4.2.1 Robustness

Definition 15 | Robustness. The robustness of a digital image forensics algorithms is defined
by its reliability under legitimate post-processing.

Forensic investigators generally wish to operate highly robust forensic algorithms, which are
barely sensitive to any form of legitimate post-processing. This is so because the lack of a
clear separation between authentic and inauthentic images increases the counterfeiter’s set of
strategic options. If quality reduction, such as lossy compression or downscaling, is considered
plausible and thus inconspicuous, a counterfeiter can always try to eliminate subtle identifying
traces of the original class C by reducing the semantic resolution of images x (C). The practical

60



3.4 Counter-Forensics

relevance of this approach can be readily seen from the visual quality of typical image forgeries
published on the Internet. Indeed, many known forensic algorithms are sensitive to strong
quantization. Yet some exceptions exist. For example, scans of printed and dithered images
in newspapers are coarse digital representations of the real world, but traces of inconsistent
lighting may still be detectable [112].

As a counter-forensic technique, legitimate post-processing does not require much knowledge
of the image generation process. Its sole objective is to generate plausible counterfeits. It is
sufficient if the counterfeit is moved somewhere outside the decision region RC (subject to the
constraints in Definition 13).

As a consequence, the experimental literature is mainly concerned about the robustness of
novel forensic algorithms. Most authors measure and report the performance loss as a function
of JPEG compression quality or strength of additive white noise. While this is a good indicator
of the average reliability, it does not permit conclusions on the overall reliability. A more
complete view also has to consider worst-case scenarios with sophisticated and intentional
counterfeiters. Resistance against such attacks is directly associated with the security of forensic
algorithms.

3.4.2.2 Security

Definition 16 | Security. The security of a digital image forensics algorithm is defined by its
reliability to detect intentionally concealed class changes. In other words, security is the ability
to withstand counter-forensics.

Because complete knowledge of the theoretical class likelihoods PC(x ) is never reachable, the
security of forensic algorithms directly relates to the forensic investigator’s model of digital
images (or, equivalently, the assumptions about PC(y)). By exploiting shortcomings of this
model, counterfeiters purposely move the counterfeits in a particular direction towards the
decision boundary of the original class C (and just beyond). The more restricted this model is,
the easier a counterfeiter can in general find ways to construct successful counter-forensic tech-
niques. In the light of this important observation, counter-forensic techniques clearly benefit
from the modus operandi of using low-dimensional projections when assigning digital images
to particular classes. A viable and straightforward strategy to increase model dimensionality
is to combine several low-dimensional algorithms, which ideally rely on independent feature
spaces. This ‘suite of detection tools’ is exactly what has been propagated by Popescu and Farid
[196] (cf. Section ??). As the dimensionality (i. e, the number of employed forensic algorithms)
grows, it becomes increasingly harder for the counterfeiter to move an image into the target
decision region in each dimension at the same time.

Moreover, counterfeiters are generally subject to similar practical limitations as forensic
investigators. In particular, the very same epistemic bounds apply to the design of both
image forensics algorithms decide and counter-forensic methods attack, respectively. Both
sides need to resort to relatively low-dimensional image models, which are ultimately only
assumptions about reality. This implies that counterfeiters can never gain perfect knowledge
whether their image model is good enough so that no decision function can discriminate
between authentic and counterfeit images. The theoretical reliability in Definition 14 cannot
be calculated in the absence of knowledge of PC′0(x ) and PC′1(x ). A counter-forensic attack
will only be successful as long as image forensics algorithms have not been refined accordingly.
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The best that counterfeiters can hope for is perfect reliability with respect to a model. The
interaction of image forensics and counter-forensics can therefore be framed as competition for
the best image model.

If counterfeiters succeed in employing superior image models, their attacks are more pow-
erful. Their success does not depend on adjustable definitions of plausibility, but rather on
technological weaknesses of forensic algorithms. While at least certain situations allow forensic
investigators to lower the level of uncertainty by enforcing higher image quality standards
(recall Example 12), it is often more difficult to enter the next round in the competition for the
best image model and further advance forensic algorithms.

As has been pointed out in the context of digital watermarking [43, p. 297], robustness is
necessary but not sufficient for security. If counter-forensic attacks against a forensic algorithm
decide with attack ∈ Plegitimate exist, this algorithm cannot be considered secure. However,
truly secure algorithms need to be reliable under all possible attacks attack ∈ P .37

3.4.3 Adversary Models

A series of influencing factors determines the vulnerability of forensic algorithms to counter-
measures, and it is useful to disentangle these effects to understand their individual impact
on the security of forensic methods. Traditionally, assumptions about strength and knowledge
of the counterfeiter are referred to as adversary model, although we have to note that a
straightforward adoption from fields like cryptography or other domains of multimedia security
is not feasible: digital image forensics does not rely on secret keys. Rather, the decidability of
forensic problems solely depends on knowledge about the inherent class likelihoods PC(x ).

In the following, we discuss what aspects should be considered part of an adversary model
in digital image forensics and explore how different settings affect the vulnerability of image
forensics algorithms to counter-forensic attacks.

3.4.3.1 Goal of the Attack

Depending on their specific goal, counter-forensic attacks either strive for suppression of
identifying traces of the original class C, or synthesis of artificial traces of a particular target
class Ctarget 6= C (cf. Section 2.5). The first aim is generally easier to achieve, because no special
requirements on the resulting counterfeit exist apart from the general semantic constraint. It is
sufficient to move x (C) somewhere outside the decision region RC . The attack is successful
as soon as the forensic investigator cannot trace back the original class anymore. Hence, it
is irrelevant to which class the counterfeit is eventually assigned. Counterfeiting a particular
target class, on the other hand, is more involved. Here, the counterfeiter needs to address both,
the suppression of identifying traces of the original class and the synthesis of artificial traces of
the target class.

Example 15 | Sensor Noise Counter-Forensics. In PRNU-based digital camera identification (cf.
Example 10), the insertion of the reference noise pattern of a target camera may lead to desired

37 Recent watermarking literature conjectures that robustness and security cannot be achieved at the same time.
Rather an acceptable trade-off needs to be found [239, and references therein]. It is an open question whether this
also applies to digital image forensics.
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decisions for the new class Ctarget. However, because the (distorted) fingerprint of the true
camera is still present, a thorough forensic investigator may find abnormally high likelihood
values PC

�
x (C̃target)

�
suspicious. A more sophisticated attack would thus try to suppress the

sensor noise of the original camera before.

3.4.3.2 Knowledge about Function decide

According to Kerckhoffs’ principle [120], a system’s security must not rely on the secrecy of its
algorithms but only on a secret key. Because secret keys do not exist in digital image forensics,
a direct application of this widely accepted security paradigm is not possible. Furthermore,
Böhme [17] pointed out that a general hurdle to the adoption of Kerckhoffs’ principle to
empirical disciplines lies in the incognizability of distributions PC(x ). A strict interpretation
would require to grant counterfeiters super-natural capabilities. With reference to Kerckhoffs’
principle, it still seems reasonable to assume that counterfeiters have full knowledge of the
forensic investigator’s image model and decision rule, respectively, and to accept that specific
security properties only hold valid as long as counterfeiters have not found better models.

3.4.3.3 Image Model of the Attacker

The better assumptions about PC′0 and PC′1 adhere to reality the better can counterfeiters exploit
shortcomings of existing image models. As such, the image model of the attacker is probably
the most crucial part of any adversary model for image forensics, and its sophistication is
directly proportional to the security of algorithm decide. As pointed out in Section 3.4.2,
epistemic bounds dictate that no conclusiveness exists because forensic investigators will
always have the chance to make improvements to their own model.

3.4.3.4 Access to Function generate

Image models reflect the general knowledge that both forensic investigators and counterfeiters
have of instances of function generate and the corresponding class likelihoods. The security of
forensic algorithms further depends on the capability to sample outcomes of relevant instances
of function generate. It is well possible that a counterfeiter is in possession of a superior image
model in theory, but cannot put it in use satisfactory because of missing access to functions
(acquire,process) ∈ (A ×P )(C′0). Consider for instance the above Example 15 of inserting
a new PRNU fingerprint into an image to pretend a different source digital camera. While
efficient methods for this purpose undoubtedly exist, they require access to the target digital
camera to prevent that residues of publicly available images, which have been used to create
the fingerprint, remain detectable in the counterfeit [92].

3.4.3.5 Admissible Semantic Resolution

The capability to distinguish between authentic and inauthentic images further depends on the
images’ available semantic resolution (cf. Sections 3.1.2 and 3.3.3.2). If forensic investigators
are in the position to impose strict requirements on the minimum necessary image quality,
they can effectively limit the design space of counter-forensic attacks by forcing counterfeiters
to come up with image models of ever-increasing sophistication. In this view, the admissible
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semantic resolution is a type of security parameter. Similar to the key length in cryptography or
the inverse embedding rate in steganography, it controls the attacker’s probability of success.

3.4.3.6 Computational Bounds

Realistic forensic analyses will only yield reliable results against the backdrop of evaluating a
large number of different class likelihoods for a even larger number of images.38 Combined
with the high dimensionality of typical digital images, this calls for considering also the
computational resources of forensic investigators and counterfeiters as building blocks to
an adversary model. Computational power can, within certain limits, impact the quality
of available image models in two directions. First, unconstrained access to computational
resources allows (in theory) to handle image models of arbitrary complexity and prevents
from the use of sub-optimal procedures. As a typical example, consider the test of a particular
PRNU signal against a large database of known digital camera fingerprints, where it has
been proposed to rely on trimmed [90] or aggregated [13] signal representations to keep the
problem computationally tractable. On a second dimension, computational power can certainly
mitigate the problem of sampling images, which ultimately increases the information available
about distributions PC(x ). Still, even computationally unconstrained forensic investigators
and/or counterfeiters are not free of epistemic bounds. More computations cannot compensate
for inherently incomplete knowledge about the incognizable reality (and vice versa) [18,
p. 101].

3.4.4 Classification of Counter-Forensic Techniques

A first classification of counter-forensic techniques was already discussed in Section 3.4.2,
where we distinguished between attacks based on robustness and security properties of forensic
algorithms. In the following we present two further dimensions along which counter-forensics
can be classified. While integrated and post-processing attacks vary in their position in the image
generation process, targeted and universal attacks differ in the (range of) attacked forensic
algorithms. Figure 3.8 illustrates our classification and the following subsections discuss each
of the dimensions in more detail.

38 A large class space is of particular relevance in source device identification. The analysis of a considerable amount
of images is always necessary to infer or validate reasonable image models.
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3.4.4.1 Integrated and Post-Processing Attacks

Post-processing attacks modify images x (k) such that the resulting counterfeits x (l̃) do not exhibit
traces of the original class Ck anymore (cf. Example 13). Figure 3.9 illustrates that such attacks
can be thought of as additional processing step attack ∈ P , which supplements the original
generation process. They are hence implemented as direct application of Equation (3.36) and
may take advantage of robustness issues or security weaknesses.

Integrated attacks, on the other hand, interact with or replace parts of the original image
generation process. Instead of x (k), the counterfeit x (l̃) is generated directly by a tuple
(acquire′,process′). The modified functions acquire′ and process′ are specifically designed
to avoid the formation of identifying traces of the original class or to mimic characteristics
of the target class (see also Figure 3.9). In the aforementioned Example 13, an integrated
attack would directly transform the authentic image x (1)1 to a semantically different counterfeit

x (1̃)3 without ever releasing the detectable manipulation x (0)2 . We note that this procedure is
also covered by our formal description of counter-forensic attacks in Definition 13, because it

is always possible to express the (imaginary) map x (0)2 7→ x (1̃)3 in terms of a post-processing
function attack. As integrated methods obviously require deep knowledge of the image
generation process, they do not address robustness issues of forensic algorithms by definition.
This is also indicated in Figure 3.8, where the corresponding regions are left blank.

Integrated methods are mainly relevant for manipulation detectors. Here, counterfeiters are
hardly restricted in the choice of image processing primitives and can replace undesirable
components according to their needs. Integrated attacks to impede source identification are
less obvious.39 Nevertheless, it is conceivable to modify software for raw image processing for
counter-forensic purposes. With freely available open-source firmware modifications, device-
internal counter-forensics may become a serious threat to forensic investigators since essential
device-specific traces need not leave the device at all, cf. Section 3.3.3.3.

3.4.4.2 Targeted and Universal Attacks

A further classification is borrowed from the context of steganalysis [66] and digital watermark-
ing [43]. We call an attack targeted, if it exploits particulars and weaknesses of one specific
forensic algorithm decide, which the counterfeiter usually knows. Such vulnerabilities directly
relate to the image model implemented in the forensic algorithm. Clearly, it is possible (and
likely) that other forensic algorithms using alternative or improved image models can detect
such counterfeits.

Conversely, universal attacks try to maintain or correct as many statistical properties of the
image in order to conceal manipulations even when presented to unknown forensic tools. This
is by far the more difficult task, and it is an open research question whether image models can
be found good enough to sustain analysis with combinations of forensic algorithms. Even if we
assume that targeted attacks against all known forensic algorithms exist, a simple combination
of them in general will not lead to a universal attack—at least when typical low-dimensional
image models are employed, which ignore the interference and interdependence of different
attacks.

39 Pathological attacks can be constructed by capturing a scene with a completely different device.
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Figure 3.9: Post-processing and integrated counter-forensic attacks. Post-processing attacks suppress
and/or synthesize identifying traces subsequent to the original image generation process. Integrated
attacks directly replace the original process with a counter-forensic variant.

A weaker, yet more practical form of universal attacks exploits poor robustness properties
and uses lossy but legitimate processing whenever plausible. Given most forensic algorithms’
strong dependence on the available semantic resolution, this type of attack will often be the
most convenient way to deliberately mislead a multitude of forensic schemes at the same
time. Recall that this variant of universal attacks is always a trade-off between originality and
plausibility of the counterfeit. Even if strong quantization removes identifying traces of the
original class, it very likely precludes claims about the originality of the corresponding image
(cf. Section 3.3.3.2).

3.5 Relations to Prior Work

The previous sections introduced and discussed a formal framework for the description of
digital image forensics and counter-forensic attacks. As we have mentioned in the very
beginning, reflections on theoretical underpinnings of this emerging research field have been
mostly subordinated to endeavors of advancing specific detection techniques. Nevertheless,
our classification framework is clearly driven by the vast number of practical schemes that, in
various ways, make use of long-established statistical classification and pattern recognition
techniques. Already one of the very first works on digital image forensics alludes to classification
methods and likelihood ratio tests [79]. An explicit mention of the relation between class
space and image generation process first appeared in 2004 [7, 125, 196]. Yet also many of our
more specific observations with regard to image authenticity, image models, robustness and
security have appeared in the existing body of literature, although mostly in implicit form. For
instance, both Popescu [194, p. 5] and Wang et al. [231, p. 319] hint to potential issues that
may arise from legitimate post-processing. Robustness of forensic algorithms (mainly to JPEG
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compression) has in general received some interest throughout the literature. Farid and Lyu
[60] as well as Lukáš et al. [153] were among the first to mention that ‘counter-attacks’ and
‘malicious post-processing’ against specific forensic algorithms are a potential threat to forensic
investigators.40 Implicit adversary models appeared early on in the work of Farid et al., where
it was usually assumed that sophisticated targeted attacks are beyond the skills of average
image forgers [198, i. a.]. Goljan et al. [91] discuss specific ‘attack scenarios’ and reflected
on strength and sophistication of potential counterfeiters. Huang [106] and Ng [173] first
indicated that counterfeiters are subject to a semantic constraint.41

Only few works have reasoned about the theoretical background of a broader image forensics
and counter-forensics framework. In the following, we discuss connections of our work to
earlier definitions of authenticity (Section 3.5.1) and component forensics (Section 3.5.2).

3.5.1 Image Authenticity

Ng [173, p. 6] defines authenticity as the property of digital images to « represent a witness
to an actual event, place, or time ». He further mentions two factors that control authenticity,
namely the natural scene quality and the imaging process quality of digital images. The former
relates to the « physics of the real-world light transport » (i. e., the natural phenomenon, which
is projected to a digital image, see also Section 2.1.4) and the latter to characteristics of
the image acquisition device [181, p. 387]. The rationale here is that authentic images are
valid representations of natural phenomena (natural scene quality), which exhibit identifying
traces of particular image acquisition devices (imaging process quality). Both quantities can
be examined to infer the authenticity of an image under investigation, which can be either
scene-authentic, imaging-process-authentic, or both [177]. The definition of natural scene
quality acknowledges both the empirical nature and the high dimensionality of the problem.
Consequently, only low-dimensional image models are available, which should reflect natural
image statistics, device parameters as well as scene constraints [181, pp. 400–401]. Although
rather informal, Ng’s setup clearly contains most ingredients to our idea of authenticity, and
it is straightforward to plug Definitions 4 and 5 into his framework to obtain the first part of
Definition 7: all original natural images are authentic. Yet, because inauthenticity is treated
only implicitly via the absence of authenticating characteristics, no direct parallels to the
notions of semantic equivalence and legitimate post-processing exist.

3.5.2 Component Forensics and Classifiability

The decidability of a forensic problem hinges on the notion of identifying traces of particular
parameter spaces Θ(C). Distinguishing between outputs of different image generation functions
(i. e., between samples drawn from the associated class likelihoods) ultimately means to infer
(a subset of) the corresponding parameters θ . Swaminathan et al. [218, 220, 224] assume
that each component of an acquisition device is characterized by a set of parameters θ c ⊂ θ ,
where θ c denotes the parameters of the c-th component. The goal of component forensics

40 For completeness, we note that Huang’s paper on the synthesis of color filter array artifacts [106] was the first
publication that explicitly addressed counter-forensics. Unfortunately, many of the definitions and concepts therein
remain unclear. In particular, Huang made the definition of the true class of an image depend on partitions of the
image space, which gives rise to decision ambiguities (cf. our discussion preparatory to Definition 9).

41 However, both authors do no explicitly link their rather vague requirements, namely x (1̃) ≈ x (0) [106] and a
minimal visual quality loss between x (0) and x (1̃) [173, p. 117], to the semantic meaning of image x (0).
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is then to assign a given image under analysis to one out of Kc possible configurations θ (k)c ,
0≤ k < Kc, a component may take [222]. Because passive–blind investigators cannot access
individual components but have to examine the device as a black box, component forensics of
a N -component device here boils down to inference about a set of parameters {θ 0, . . . ,θ N−1}.
By defining classes C to encapsulate specific parameter combinations

Θ(C) =
§
θ
��θ (kC0 )0 , . . . ,θ

(kCN−1)
N−1 ∈ θ

ª
, 0≤ kCc < Kc ,

it is clear that component forensics is a special image forensics problem, which is defined over
a class space of size K = |C |=∏N−1

c=0 Kc , cf. Definition 8.

To measure the decidability of the corresponding forensic problem, Swaminathan et al. [222]
introduce the notion of ‘classifiability’. More specifically, a class space C = {C0, . . . ,CK−1} is
said to be (non-intrusively) classifiable, if for each Ck ∈ C :

∀x ∈ X Pr(Ck | x )≥ Pr(Cl | x ) ∀l 6= k , and (3.39)

∃x ′ ∈ X Pr(Ck | x ′)> Pr(Cl | x ′) ∀l 6= k . (3.40)

We remark that this definition is of limited use in typical passive–blind settings, where the
forensic investigator has no influence on which images to analyze. A K-class problem will
be considered classifiable even if the forensic investigator can do no better than random
guessing in the vast majority of |X| − K cases, K≪ |X|.42 We therefore believe that any binary
measure of passive–blind decidability should really be a measure of undecidability in order to
avoid misleading conclusions.43 Another option is of course to quantify (un)decidability, for
instance using Kullback–Leibler divergence (cf. Definition 11) or alternative multi-distribution
divergence measures such as Jensen-Shannon divergence [145].

3.6 Relations to Steganography and Digital Watermarking

We close this chapter by broadening the perspective a bit further. Counter-forensics and its
competition with digital image forensics should not be considered an isolated research field.
It should rather be seen in close relation to established disciplines in the broader field of
information hiding and multimedia security. This way, obvious parallels can help to foster and
deepen the understanding of research questions in digital image forensics and counter-forensics
that may have already been identified and discussed elsewhere.

In particular, the general definitions in Sections 3.1 to 3.4, namely

. image generation processes that introduce identifying traces and thus span a class space,

. intentional class changes that are subject to constraints, and

. decision rules to infer the unknown class of an image

42 For a binary class space and uniform priors, any two distributions P0(x ) and P1(x ) with DKL(P0,P1) = ε > 0, will
be called classifiable, independent of how small ε is.

43 A somewhat different situation arises in non-blind settings if the forensic investigator can choose which images to
analyze. Swaminathan et al. [218] name the investigation of patent infringement as a particular example.
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Figure 3.10: Relation of image forensics and counter-forensics to other fields in information hiding.

have already appeared in very similar form in the context of steganographic communication
[66, 18] and digital watermarking [43], and their specific notions of security. Figure 3.10
illustrates how these disciplines relate to digital image forensics and counter-forensics. It
serves as a blueprint for the following discussion. The process chain from image generation,
via class change, to decision is depicted in columns from left to right. Important distinctions,
such as between empirical acquisition and deterministic processing or the nature of constrains
are also reflected. Focal areas of the specific sub-fields of information hiding are arranged
in rows so that corresponding hiding, detection, and deception techniques can be associated
horizontally. Similarities of digital image forensics and counter-forensics with related tasks in
steganographic communication and digital watermarking appear as vertical relations.

Counter-forensics shares common goals with steganography. By embedding a secret message,
a cover image’s class is changed from C1 to the class of stego images C0. Both steganogra-
phy and counter-forensics try to hide the very fact of a class change, and their success can
be measured by the Kullback–Leibler divergence between the two conditional probability
distributions PC1

and PC0
(cf. Equation (3.19)). This imposes statistical constraints on both.

Steganography differs from counter-forensics in the amount and source of information to hide.
Most steganographic algorithms are designed to embed a message by minimizing distortion,
thereby preserving the cover’s semantic meaning. Counter-forensics, by contrast, conceals the
mere information that larger parts of the original image x (1) have been modified, often with
the aim to change its semantic meaning. The new semantic meaning of the counterfeit x (0)

can be regarded as the ‘message’ to be transmitted.

Steganalysis, as a counterpart to steganography, aims at unveiling the presence of a hidden
message in a specific image without having access to the original cover. A general analogy
between steganalysis and image forensics becomes evident if we consider the act of coun-
terfeiting as information which is hidden inconspicuously in an image. This suggests that
counter-forensics—similar to steganography, where capacity and security are considered as
competing design goals—needs to trade off the amount of information to hide and detectability.
The stronger a manipulating operation interferes with the inherent image structure, the harder
it is to feign an authentic image.
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Another analogy exists between counter-forensics and attacks against robust digital watermark-
ing schemes, where images of class C0 are generated by a watermark embedding process. In
contrast to steganalysis, attacks against (robust) digital watermarks are designed to merely
remove the embedded information, i. e., changing a watermarked image’s class to C1, while
retaining the semantic meaning and to some degree the perceptual quality of the cover. In this
sense, identifying traces in digital image forensics can be understood as inherent watermark,
which counter-forensics aim to suppress or change. Since attacks against digital watermarks do
not specifically address statistical undetectability, the robustness issues of digital watermarking
schemes may find a correspondent in digital image forensics. Similar to digital watermarking
[114], forensic investigators also wish that the performance of their algorithms degrades gently
as a function of image quality loss.

Note that the above parallels, on a technical level, correspond to the two different approaches
to counter-forensics, as discussed in Section 3.4.4.1. Integrated attacks are more closely related
to steganography (hiding traces of a class change by design) whereas post-processing attacks
have stronger similarities to attacks against digital watermarking (remove identifying traces).

We conclude this excursion to related fields with a note of caution. The rather informal
description of the above similarities should not be read as a suggestion to disregard important
particularities of each field. Although all discussed disciplines are in general tied to epistemic
bounds (as long as empirical covers are involved [17]), the primary source of differences lies
in the role of the class generating process. More specifically, digital watermarks can be designed
to have certain robustness or security properties, i. e., type and strength of identifying traces
are under full control of the watermark designer and can be shaped according to particular
requirements (cf. Section 2.2.1). Also in steganography, the class generating process is more or
less under control of the steganographer. Cover images are solely a means to communicate
hidden messages. This leaves more degrees of freedom to choose the cover and the strength of
distortion due to embedding. This is totally different in digital image forensics and counter-
forensics. Neither can forensic investigators control the quality of identifying traces (apart from
imposing a certain admissible semantic resolution, cf. Section 3.4.3.5), nor can counterfeiters
overcome their semantic constraints. In the long run, their only option is to constantly gather
knowledge about image generation processes and to eventually improve their image models.

3.7 Summary

This chapter has devised a formal framework of digital image forensics and counter-forensics.
With regard to the underpinnings of our framework, we see the following main contributions
of this chapter in

. the formalization of a universal image generation process as a proxy for arbitrary image
acquisition and post-processing procedures (Section 3.1.1), which allowed us to give

. a formal definition of relevant attributes (most importantly the notion of authenticity) of
digital images in the context of digital image forensics (Sections 3.1.1.2 and 3.1.2).

Based on this image generation process, we then formulated image forensics as a classification
problem and discussed its decision-theoretic foundations. The viability of this perspective on
digital image forensics has already been confirmed before by numerous concrete instances
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of practical forensic algorithms in the body of literature. We adapted the underlying ideas
and concepts to build a coherent framework that is not limited to specific sub-problems (e. g.,
source identification or detection of post-processing) but rather covers digital image forensics
in a very broad sense. Particular emphasis was put on

. the exploration of fundamental limits of digital image forensics, which are imposed by the
decision-theoretic framework (Section 3.2.2.2) and by practical constraints (Section 3.3).

We interpreted this framework in a security context and gave

. a formal definition of counter-forensics fully consistent with the previously introduced nota-
tions (Section 3.4.1), accompanied by

. a discussion of general robustness and security properties of forensic algorithms (Sec-
tion 3.4.2) and a classification of counter-forensic attacks (Section 3.4.4).

Parallels to related disciplines like steganography or digital watermarking indicate that the
notion of a universal image generation process and the resulting decision problem is not specific
to digital image forensics.

Recent works in the literature emphasize that only slightly more sophisticated image models—
on the side of either the forensic investigator or the counterfeiter—can be sufficient to devise
more reliable detectors and/or attacks. In general, we expect forensic algorithms to remain
under constant development. At the same time, a growing number of publications on counter-
forensics suggests an increased awareness of security-related questions in the field of digital
image forensics. First works addressing the problem of “countering counter-forensics” [92,
139, 228] indicate that the competition for superior image models has just begun.

Improvements on the robustness of forensic algorithms are of equally high practical relevance.
Digital images are often downsampled and/or JPEG compressed before being made public.
While being perfectly plausible in many situations, low-resolution images are likely to conceal
a considerable part of the image generation process’ identifying traces from forensic algorithms.
As for JPEG images, the literature also provides an ample body of tools to exploit specific
characteristics of the compression pipeline, for instance, to detect repeated saving in the
JPEG format [196, 31, 188]. Yet no methods to robustly deal with combinations of double
compression and downsampling are presently known. With respect to strong downsampling,
we generally remain more pessimistic, at least as far as detectors based on periodic interpolation
artifacts are concerned. Although recent frequency domain approaches discuss first promising
alternatives [61], it is too early to prognosticate whether forensic investigators can ever expect
a moderate level of robustness, at least.

In conclusion, both security and robustness of forensic algorithms will equally have to be
addressed in future works. In this sense, the future development of digital image forensics is
likely to resemble a process similar to the evolvement of related information hiding disciplines,
where a fruitful cat-and-mouse game has led to hiding and detection algorithms of considerable
sophistication [73, 189, 135, i .a.]. In general, we believe that a lively and mutual interaction
will prove beneficial to the whole field of information hiding. Not only can the rather young
field of digital image forensics and counter-forensics learn from the more established branches,
also steganography and steganalysis, which both have to cope with heterogenous image sources,
can gain from findings in digital image forensics to conceive better, or at least adaptive, image
models [18, 9]. Moreover, the literature now reports digital watermarking schemes that directly
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interact with the image generation process [165], which suggests to employ (counter-)forensic
techniques as building blocks for the design of attacks against digital watermarks and the
detection thereof. Yet the strong overlap not only calls for interaction on the practical side.
Formalizing unified theoretical foundations seems a further promising goal to advance the
overall field.
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