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Digital Image Forensics

I image forensics: assess the authenticity of digital images by exploiting
their inherent statistical characteristics

source identification manipulation detection
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Digital Image Forensics

I image forensics: assess the authenticity of digital images by exploiting
their inherent statistical characteristics

source identification manipulation detection

‘malicious’ post-processing ‘legitimate’ post-processing

. (mostly) local changes

. splicing

. copy & paste

. . . .

. content-preserving global changes

. denoising

. compression

. contrast enhancement

definitions depend on established habits and conventions
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Processing History of Digital Images

I ’malicious’ post-processing is generally considered to be more critical

but: general processing history of digital images is of great interest

I state of the image prior to the actual (’malicious’) manipulation may influence
. the choice of suitable forensic tools
. the interpretation of results obtained with these tools

(this applies also to steganalysis) [Böhme, 2009]

I ‘legitimate’ post-processing can interfere with or even wipe out subtle traces of
previous manipulations
. decreased reliability of forensic methods
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Detection of Median Filtering

I median filter is a well-known non-linear denoising and smoothing operator

xi+r,j+s
yi,j = median

(r,s)∈W
(xi+r,j+s)

Why is the detection of median filtering of interest?

I forensic methods often rely on some kind of linearity assumption
. vulnerable to median filtering [Kirchner & Böhme, 2008]

I smooth(ed) images may require a specific treatment in various applications

Median filtering is hard to model analytically

I highly non-linear and signal-adaptive
I most image processing literature assumes i.i.d. samples

Kirchner & Fridrich On Detection of Median Filtering in Digital Images slide 4 of 17



Detection of Median Filtering

I median filter is a well-known non-linear denoising and smoothing operator

xi+r,j+s
yi,j = median

(r,s)∈W
(xi+r,j+s)

Why is the detection of median filtering of interest?

I forensic methods often rely on some kind of linearity assumption
. vulnerable to median filtering [Kirchner & Böhme, 2008]
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Streaking
I output pixel is drawn directly from the set of input samples
I non-zero probability that output pixels in a certain neighborhood originate from the

same input pixel → streaking [Bovik, 1987]

I median filtering increases P0 = Pr(yi,j = yk,l)

I for continuous-valued i.i.d. input samples, P0 is distribution-independent,

but not for discrete signals
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Measuring Streaking Artifacts in Real Images

I histogram of the first-order differences

di,j = yi,j − yi+k,j+l with lag (k, l)
I increased peak h0

due to median filtering

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
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I histogram bin h0 depends on the image content (smoothness, saturation, . . . )
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I median filtering increases h0 relative to h1

I normalized measure: % = h0
‹

h1

I %� 1 for median filtered images
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Robust Measure

I saturation effects are likely to cause false positives
I assumption: saturation is mostly a localized phenomenon
I measure streaking artifacts in the set B of all non-overlapping B × B blocks

%̂ = median
b∈B

(wb%b) with weights wb = 1−
„

h0

B2 − B
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%̂ (B = 64)

original
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5× 5 median

I generally good discrimination between
original and filtered images
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Experimental Results
overall vs. block-based measure

. database of 6500 images
from 22 different cameras

. never-compressed images,
converted to grayscale

. (k, l ) = (1, 0)
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I block-based approach (B = 64)
is more robust to outliers

I perfect detection for FPR < 1.8 %
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Experimental Results
influence of block size

. database of 6500 images
from 22 different cameras

. never-compressed images,
converted to grayscale

. (k, l ) = (1, 0)
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I ROC curves for block-based approach

I %̂ superior for smaller blocks
I too small blocks do not yield

additional gain (overall amount of
saturation remains the same)

I B = 64 suitable choice
(for this set of images)
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Experimental Results
alternative smoothers

. database of 6500 images
from 22 different cameras

. never-compressed images,
converted to grayscale

. (k, l ) = (1, 0)
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I ROC curves obtained by taking
linearly smoothed images as
‘originals’

I detector can well distinguish
between median filtered and
otherwise smoothed images
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Experimental Results
JPEG post-compression

. database of 6500 images
from 22 different cameras

. never-compressed images,
converted to grayscale

. (k, l ) = (1, 0)
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I detector is not robust against
JPEG compression

I JPEG smooths the first order
differences histogram

I JPEG introduces false alarms
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SPAM Features for Median Detection

JPEG 80
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I smoothing generally affects first-order differences
. peaky distribution
. further ‘enhanced’ by subsequent

JPEG compression
I strongest effects for small differences |di,j | ≤ T

but: generally strong dependence on the image content

I more sophisticated model: SPAM features

[Pevný et al., MM-Sec 2009]

I subtractive pixel adjacency matrix models first-order
differences as n-th order Markov chain

I transition probabilities (= conditional joint distribution)
taken as features in a high-dimensional classification
problem
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SPAM Details

I transition probabilities for first-order differences d(k,l)
i,j with lag (k, l ) ∈ {-1, 0, 1}2

M(k,l)
δn,...,δ0

= P
“

d(k,l)
i+kn,j+ln = δn

˛̨̨
d(k,l)

i+k(n−1),j+l(n−1) = δn−1, . . . , d(k,l)
i,j = δ0

”

d(0,1)
i,j

(0, -1)

(0, 1)

d(1,1)
i,j

(1, 1)

(1, -1)

. horizontal / vertical transition matrices

F(h / v) = 1/4

“

M(0,1)

+

M(0,-1)

+

M(1,0)

+

M(-1,0)

”

. diagonal transition matrices

F(d) = 1/4

“

M(1,1)

+

M(1,-1)

+

M(-1,-1)

+

M(-1,1)

”
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SPAM Classifier

I number of features: 2 (2T + 1)n+1

I in our tests: n = 2 and T ∈ {1, 2, 3}
. up to 686 features

I soft-margin SVM with Gaussian kernel
. one classifier per filter size and JPEG

post-compression quality
. parameter search and training with ≈ 3250

images per class (five-fold cross-validation)
. validation with another ≈ 3250 images

per class

n

2T + 1
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Experimental Results
SPAM features

. database of 6500 images
from 22 different cameras

. never-compressed images,
converted to grayscale

. 512× 512 center region
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JPEG 90
JPEG 80
JPEG 70

I high detectability even for rather
strong JPEG compression

I higher SPAM dimensionality
increases performance

I diagonal features do not provide
additional information beyond
horizontal / vertical features

I considerably improved performance
for larger filter sizes
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Further Experiments

I lower-order Markov models yield slightly worse results
I larger images result in better performance

I pre-median JPEG compression does not seem to influence detection results

I SPAM features cannot distinguish between median filter and other smoothers
. similar effects w. r. t. the distribution of small first-order differences

. SPAM as a general-purpose smoothing detector?
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Concluding Remarks

I general processing history is of great interest in various situations
. make informed decisions in image forensics, steganalysis and watermarking

I in this study: detection of median filtering

streaking artifacts

zeroth-order Markov chain
% = Pδ0 / Pδ1

smoothness

n-th order Markov chain
F = Pδn,...,δ0

first-order differences

I JPEG post-compression obfuscates the actual type of smoothing
. SPAM as general-purpose detector
. explore alternative / additional features that are more specific to median filtering
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Experimental Results
per-block decision

. database of 6500 images
from 22 different cameras

. never-compressed images,
converted to grayscale

. (k, l ) = (1, 0)
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full image
B = 256
B = 32

I ROC curves over all non-overlapping
blocks of all images

I %b itself is more sensitive to local
variations throughout the image

I larger blocks are beneficial for a
per-block decision
(local detection of median filtering)
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