

Faculty of Computer Science Institute of Systems Architecture, Privacy and Data Security Research Group

Efficient Estimation of CFA Pattern Configuration in Digital Camera Images

Electronic Imaging 2010 Media Forensics and Security II

Matthias Kirchner Technische Universität Dresden

San Jose, CA, 2010/01/18

CFA Interpolation

- typical digital cameras use only one CCD / CMOS sensor and a color filter array (CFA) to capture full-color images
- missing color information is estimated from surrounding genuine elements in the raw image

RAW image

full-color image

CFA interpolation / demosaicing

CFA Interpolation

- typical digital cameras use only one CCD/CMOS sensor and a color filter array (CFA) to capture full-color images
- missing color information is estimated from surrounding genuine elements in the raw image

RAW image R

R G

G В

G

R G

G B G B

R G

G B

R G R G

demosaiced images exhibit specific inter-pixel correlation artifacts

CFA interpolation / demosaicing

CFA Artifacts in Digital Image Forensics

 color filter array (CFA) interpolation artifacts form an important class of device characteristics

source identification

 different camera models use different interpolation procedures

manipulation detection

 post-processing damages characteristic inter-pixel correlation pattern

CFA Artifacts in Digital Image Forensics

 color filter array (CFA) interpolation artifacts form an important class of device characteristics

source identification

 different camera models use different interpolation procedures

manipulation detection

- post-processing damages characteristic inter-pixel correlation pattern
- applications in steganalysis or digital watermarking

Example Application [Popescu & Farid, 2005]

periodic artifacts in the linear predictor residue (p-map)

Dresden Palace, image is part of the 'Dresden Image Database' [Gloe & Böhme, 2010]

Example Application [Popescu & Farid, 2005]

periodic artifacts in the linear predictor residue (p-map)

Dresden Palace, image is part of the 'Dresden Image Database' [Gloe & Böhme, 2010]

Example Application [Popescu & Farid, 2005]

DFT(p-map)

Dresden Palace, image is part of the 'Dresden Image Database' [Gloe & Böhme, 2010]

CFA Pattern Configuration

- early methods did not explicitly incorporate knowledge about the actual configuration of the CFA pattern [Popescu & Farid, 2005; Bayram et al, 2005]
 problem of periodic, but locally inconsistent inter-pixel correlation
- CFA configuration valuable both for source identification [Swaminathan et al., 2007] and manipulation detection [Dirik et al., 2009]
 - ▷ generally a means to **decrease the degrees of freedom** in image forensics

CFA interpolation / demosaicing

forensic examination

Kirchner Efficient Estimation of CFA Pattern Configuration in Digital Camera Images slide 4 of 15

CFA Configuration Estimation in the Literature

minimum re-interpolation error assumption

for CFA configuration $\ensuremath{\mathcal{C}}$ and the demosaicing function d

CFA Configuration Estimation in the Literature

minimum re-interpolation error assumption

for CFA configuration $\ensuremath{\mathcal{C}}$ and the demosaicing function d

$$d^{-1}(\boldsymbol{y}_{\mathcal{C}}, \mathcal{C}_i)$$

CFA Configuration Estimation in the Literature

minimum re-interpolation error assumption

X YC $d(\mathbf{x}, C)$ \mathcal{C}_1 \mathcal{C}_4 C_3

for CFA configuration $\ensuremath{\mathcal{C}}$ and the demosaicing function d

$$d\left(d^{-1}(\boldsymbol{y}_{\mathcal{C}},\mathcal{C}_{i}),\,\mathcal{C}_{i}\right)$$

CFA Configuration Estimation in the Literature

CFA Configuration Estimation in the Literature

minimum re-interpolation error assumption

X **V**C $d(\mathbf{x}, C)$ \mathcal{C}_1 \mathcal{C}_4 C_3

for CFA configuration
$$\ensuremath{\mathcal{C}}$$
 and the demosaicing function d

$$C = \arg\min_{C_i} \underbrace{\left\| \boldsymbol{y}_{C} - d\left(d^{-1}(\boldsymbol{y}_{C}, C_i), C_i \right) \right\|}_{\left\| \boldsymbol{e}_{C_i} \right\|}$$

 \triangleright subsampling matrix $\mathbf{S}_{\mathcal{C}_i}$ as simple approximation of inverse demosaicing

$$d^{-1}(\boldsymbol{y}, \mathcal{C}_i) = \mathbf{S}_{\mathcal{C}_i} \boldsymbol{y}$$

CFA Configuration Estimation in the Literature

minimum re-interpolation error assumption

X **V**C $d(\mathbf{x}, C)$ C_1 \mathcal{C}_4 C_3

for CFA configuration
$$\ensuremath{\mathcal{C}}$$
 and the demosaicing function d

$$C = \arg\min_{C_i} \left\| \underbrace{\boldsymbol{y}_{C} - d\left(d^{-1}(\boldsymbol{y}_{C}, C_i), C_i \right)}_{\|\boldsymbol{e}_{C_i}\|} \right\|$$

▷ subsampling matrix \mathbf{S}_{C_i} as simple approximation of inverse demosaicing $d^{-1}(\mathbf{y}, C_i) = \mathbf{S}_{C_i} \mathbf{y}$

 ▷ assume linear relationship between raw and interpolated pixels
 d(*x*, C_i) = H_{Ci}*x*

An Alternative Approach

assume that we actually know the genuine raw sensor output

$$C = \arg\min_{C_i} \left\| \underbrace{\boldsymbol{x} - d^{-1}(\boldsymbol{y}_{\mathcal{C}}, C_i)}_{\|\boldsymbol{e}_{C_i}^{d^{-1}}\|} \right\|$$

 ⊳ subsampling matrix S_{Ci} as simple approximation of inverse demosaicing d⁻¹(y, Ci) = S_{Ci}y

 \triangleright re-interpolation for each possible configuration C_i not necessary

CFA Pattern Synthesis [Kirchner & Böhme, 2009]

basic idea

- find a possible sensor signal \tilde{x} such that
- following the linearity assumption this is an ordinary least squares (OLS) problem

 $\|\boldsymbol{y}_{\mathcal{C}} - d(\tilde{\boldsymbol{x}}, \mathcal{C})\|_2 \rightarrow \min$

$$\begin{aligned} \mathbf{y}_{\mathcal{C}} &= \mathbf{H}_{\mathcal{C}} \mathbf{x} + \boldsymbol{\epsilon} \\ \tilde{\mathbf{x}}_{\mathcal{C}} &= (\mathbf{H}_{\mathcal{C}}^{\top} \mathbf{H}_{\mathcal{C}})^{-1} \mathbf{H}_{\mathcal{C}}^{\top} \mathbf{y} \end{aligned}$$

CFA Pattern Synthesis [Kirchner & Böhme, 2009]

basic idea

- find a possible sensor signal \tilde{x} such that
- following the linearity assumption this is an ordinary least squares (OLS) problem

 $\|\boldsymbol{y}_{\mathcal{C}} - d(\tilde{\boldsymbol{x}}, \mathcal{C})\|_2 \rightarrow \min$

$$\mathbf{y}_{\mathcal{C}} = \mathbf{H}_{\mathcal{C}}\mathbf{x} + \boldsymbol{\epsilon}$$
$$\tilde{\mathbf{x}}_{\mathcal{C}} = (\mathbf{H}_{\mathcal{C}}^{\top}\mathbf{H}_{\mathcal{C}})^{-1}\mathbf{H}_{\mathcal{C}}^{\top}\mathbf{y}$$

caveat

- for a *N*-pixel image, $\mathbf{H}_{\mathcal{C}}$ is of dimension $3N \times N$
- direct implementation of the OLS solution not tractable

efficiency improvements

 H_C is typically sparse (finite filter support) and of regular structure (periodic CFA)

CFA Pattern Synthesis [Kirchner & Böhme, 2009]

basic idea

- find a possible sensor signal $\tilde{\mathbf{x}}$ such that
- following the linearity assumption this is an ordinary least squares (OLS) problem

$$\|\boldsymbol{y}_{\mathcal{C}} - d(\tilde{\boldsymbol{x}}, \mathcal{C})\|_2 \to \min$$

$$\mathbf{y}_{\mathcal{C}} = \mathbf{H}_{\mathcal{C}}\mathbf{x} + \boldsymbol{\epsilon} \\ \tilde{\mathbf{x}}_{\mathcal{C}} = (\mathbf{H}_{\mathcal{C}}^{\top}\mathbf{H}_{\mathcal{C}})^{-1}\mathbf{H}_{\mathcal{C}}^{\top}\mathbf{y}$$

caveat

- for a *N*-pixel image, $\mathbf{H}_{\mathcal{C}}$ is of dimension $3N \times N$
- direct implementation of the OLS solution not tractable

efficiency improvements

- H_C is typically sparse (finite filter support) and of regular structure (periodic CFA)
- analytical solution for the bilinear interpolation kernel

Approximate Solution

by considering an infinite image without border conditions, approximate solutions in terms of a channel-dependent fixed linear filter can be found [Kirchner & Böhme, 2009]

$$\tilde{\boldsymbol{x}}_{C_{i}} \approx \mathbf{S}_{C_{i}}(\mathbf{F}\boldsymbol{y}) = \mathbf{S}_{C_{i}}\begin{bmatrix}\mathbf{F}^{(R)}\boldsymbol{y}^{(R)}\\\mathbf{F}^{(G)}\boldsymbol{y}^{(G)}\\\mathbf{F}^{(B)}\boldsymbol{y}^{(B)}\end{bmatrix}$$

equivalent to the analytical solution for large enough filter kernels

Approximate Solution

by considering an infinite image without border conditions, approximate solutions in terms of a channel-dependent fixed linear filter can be found [Kirchner & Böhme, 2009]

$$\tilde{\boldsymbol{x}}_{\mathcal{C}_{i}} \approx \mathbf{S}_{\mathcal{C}_{i}} \left(\mathbf{F} \boldsymbol{y} \right) = \mathbf{S}_{\mathcal{C}_{i}} \begin{bmatrix} \mathbf{F}^{(R)} \boldsymbol{y}^{(R)} \\ \mathbf{F}^{(G)} \boldsymbol{y}^{(G)} \\ \mathbf{F}^{(B)} \boldsymbol{y}^{(B)} \end{bmatrix}$$

equivalent to the analytical solution for large enough filter kernels

application to the CFA configuration estimation problem

$$\mathcal{C} = \arg\min_{\mathcal{C}_{i}} \left\| \tilde{\boldsymbol{x}}_{\mathcal{C}_{i}} - \mathbf{S}_{\mathcal{C}_{i}} \boldsymbol{y} \right\|_{2}$$

- ▷ process image with linear CFA synthesis filters
- ▷ sub-sample image and filtered image to CFA pattern C_i
- ▷ calculate difference between both
- ▷ only one linear filtering operation

Approximate Solution

by considering an infinite image without border conditions, approximate solutions in terms of a channel-dependent fixed linear filter can be found [Kirchner & Böhme, 2009]

$$\tilde{\boldsymbol{x}}_{\mathcal{C}_{i}} \approx \mathbf{S}_{\mathcal{C}_{i}} \left(\mathbf{F} \boldsymbol{y} \right) = \mathbf{S}_{\mathcal{C}_{i}} \begin{bmatrix} \mathbf{F}^{(R)} \boldsymbol{y}^{(R)} \\ \mathbf{F}^{(G)} \boldsymbol{y}^{(G)} \\ \mathbf{F}^{(B)} \boldsymbol{y}^{(B)} \end{bmatrix}$$

equivalent to the analytical solution for large enough filter kernels

application to the CFA configuration estimation problem

$$\mathcal{C} = \arg\min_{\mathcal{C}_i} \left\| \tilde{\boldsymbol{x}}_{\mathcal{C}_i} - \mathbf{S}_{\mathcal{C}_i} \boldsymbol{y} \right\|_2$$

- ▷ process image with linear CFA synthesis filters
- ▷ sub-sample image and filtered image to CFA pattern C_i
- calculate difference between both
- ▷ only one linear filtering operation

our assumptions:

- Bayer CFA pattern
- bilinear interpolation
- \triangleright continuous solution

 CFA configuration can be best determined for the green channel elements (twice as much genuine sensor pixels)

 CFA configuration can be best determined for the green channel elements (twice as much genuine sensor pixels)

two-stage approach:

 decision for the complete configuration conditional to the estimated green channel configuration

 CFA configuration can be best determined for the green channel elements (twice as much genuine sensor pixels)

two-stage approach:

- decision for the complete configuration conditional to the estimated green channel configuration
- locally large error terms can accumulate to overall wrong decision

 CFA configuration can be best determined for the green channel elements (twice as much genuine sensor pixels)

two-stage approach:

- decision for the complete configuration conditional to the estimated green channel configuration
- locally large error terms can accumulate to overall wrong decision

block-based approach:

 majority voting over all non-overlapping 2 × 2 blocks

- 5 different camera models with combined JPEG/RAW output
 - ▷ Nikon D200 (1)
 - ▷ Nikon D70/s (each 1)
 - ▷ Panasonic DMC-FZ750 (3)
 - ▷ Ricoh GX100 (2)

- 5 different camera models with combined JPEG/RAW output
 - ▷ Nikon D200 (1)
 - ▷ Nikon D70/s (each 1)
 - ▷ Panasonic DMC-FZ750 (3)
 - ▷ Ricoh GX100 (2)
- RAW images demosaiced using Adobe Lightroom and dcraw
 - 4 interpolation procedures: bilinear, VNG, AHD, LR

- 5 different camera models with combined JPEG/RAW output
 - ▷ Nikon D200 (1)
 - ▷ Nikon D70/s (each 1)
 - ▷ Panasonic DMC-FZ750 (3)
 - ▷ Ricoh GX100 (2)
- RAW images demosaiced using Adobe Lightroom and dcraw
 - 4 interpolation procedures: bilinear, VNG, AHD, LR
- JPEG compression with varying quality factors after demosacing

Ground Truth in our Experiments

- experimental evaluation requires ground truth CFA configurations
- not explicitly known for the cameras in use
 - ▷ EXIF data not necessarily contains this information
 - ▷ sensor datasheets are unreliable (active vs. effective pixels)
- CFA pattern becomes visible in the raw data of almost blue / red scences

raw data

Ground Truth in our Experiments

- experimental evaluation requires ground truth CFA configurations
- not explicitly known for the cameras in use
 - EXIF data not necessarily contains this information
 - ▷ sensor datasheets are unreliable (active vs. effective pixels)
- CFA pattern becomes visible in the raw data of almost blue / red scences

Lightroom images (and genuine camera images) are smaller than dcraw images

 synchronization by maximum cross-correlation over all possible crops of the larger image

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$	070 C	$\mathcal{C}^{(G)}$	70s C	$\mathcal{C}^{(G)}$	2750 C	$\mathcal{C}^{(G)}$	K100 C	$\mathcal{C}^{(G)}$	erall C
hilinear internolatio	n											
$\mathbf{e}_{\mathcal{C}_i}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
VNG interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	88.8	88.8	97.4	97.4	95.1	95.1	97.7	97.7	99.0	99.0	96.3	96.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	64.8	64.8	80.8	80.8	83.4	83.4	94.2	94.2	96.4	96.4	87.6	87.6
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.7	97.7	100	100	98.2	98.2	99.2	99.2	99.8	99.8	99.1	99.1
AHD interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	95.0	91.1	96.2	71.8	96.9	59.5	98.8	98.4	99.3	97.8	97.9	89.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	86.0	81.6	88.5	66.7	93.3	66.9	98.4	98.1	98.6	97.1	95.0	88.1
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	98.9	100	94.9	100	96.9	99.2	99.2	100	99.8	99.8	98.7
Adobe Lightroom												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	87.7	39.1	100	57.7	100	67.5	98.8	65.0	97.8	80.4	96.9	66.5
$\mathbf{e}_{\mathcal{C}_{i}}^{d-1}$ (total)	98.9	46.4	100	71.8	100	78.5	100	66.9	99.3	83.1	99.5	71.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.2	82.7	100	97.4	100	94.5	100	77.0	97.6	94.0	98.6	88.5

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$	070 C	$\mathcal{C}^{(G)}$	70s <i>C</i>	$\mathcal{C}^{(G)}$	2750 C	$G^{(G)}$	K100 C	$\mathcal{C}^{(G)}$	c
bilinear interpolatio	n											
$\mathbf{e}_{\mathcal{C}_{i}}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
VNG interpolation		$\mathbf{e}_{\mathcal{C}_i}$	total) (> re-in	terpola	tion	with bi	linea	ar keri	nel	
$\mathbf{e}_{\mathcal{C}_{i}}$ (total)	88.8	88.8			[Dirik	et al., 200	09]77					96.3
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (total)	64.8	$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$	total)80.8 🕻	> CFA	synthe	sis,	global	deci	sion		87.6
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.7	$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$	bloc	k) 00 p	> CFA	synthe	sis,	block c	lecis	ion		99.1
AHD interpolation	L											
$\mathbf{e}_{\mathcal{C}_i}$ (total)	95.0	91.1	96.2	71.8	96.9	59.5	98.8	98.4	99.3	97.8	97.9	89.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	86.0	81.6	88.5	66.7	93.3	66.9	98.4	98.1	98.6	97.1	95.0	88.1
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	98.9	100	94.9	100	96.9	99.2	99.2	100	99.8	99.8	98.7
Adobe Lightroom												
$\mathbf{e}_{\mathcal{C}_{i}}$ (total)	87.7	39.1	100	57.7	100	67.5	98.8	65.0	97.8	80.4	96.9	66.5
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	98.9	46.4	100	71.8	100	78.5	100	66.9	99.3	83.1	99.5	71.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.2	82.7	100	97.4	100	94.5	100	77.0	97.6	94.0	98.6	88.5

	$\mathcal{C}^{(G)}$ \mathcal{C}		$\mathcal{C}^{(G)}$ \mathcal{C}		$\mathcal{C}^{(G)}$ \mathcal{C}		FZ750 C ^(G) C		$\mathcal{C}^{(G)}$ \mathcal{C}		$\stackrel{\text{overall}}{\mathcal{C}^{(G)}} \mathcal{C}$	
bilinear interpolatio	n											
$\mathbf{e}_{\mathcal{C}_i}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
VNG interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	88.8	88.8	97.4	97.4	95.1	95.1	97.7	97.7	99.0	99.0	96.3	96.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	64.8	64.8	80.8	80.8	83.4	83.4	94.2	94.2	96.4	96.4	87.6	87.6
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	97.7	97.7	100	100	98.2	98.2	99.2	99.2	99.8	99.8	99.1	99.1
AHD interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	95.0	91.1	96.2	71.8	96.9	59.5	98.8	98.4	99.3	97.8	97.9	89.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	86.0	81.6	88.5	66.7	93.3	66.9	98.4	98.1	98.6	97.1	95.0	88.1
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	98.9	100	94.9	100	96.9	99.2	99.2	100	99.8	99.8	98.7
Adobe Lightroom												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	87.7	39.1	100	57.7	100	67.5	98.8	65.0	97.8	80.4	96.9	66.5
$\mathbf{e}_{\mathcal{C}_{i}}^{d-1}$ (total)	98.9	46.4	100	71.8	100	78.5	100	66.9	99.3	83.1	99.5	71.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.2	82.7	100	97.4	100	94.5	100	77.0	97.6	94.0	98.6	88.5

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$)70 C	$\mathcal{C}^{(G)}$	70s C	$\mathcal{C}^{(G)}$	2750 C	$G^{(G)}$	K100 C	$\mathcal{C}^{(G)}$	erall C
bilinear interpolatio												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_{i}}^{d-1}$ (block)	100	▶ gre	enc	hannel	con	ifigurati	on c	an be c	lete	rmined		99.8
VNG interpolation		mo	ost re	eliably								
$\mathbf{e}_{\mathcal{C}_i}$ (total)	88.8											96.3
$\mathbf{e}_{\mathcal{C}_{i}}^{d-1}$ (total)	64.8											87.6
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.7											99.1
AHD interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	95.6	91.1	96.2	71.8	96.9	59.5	08.8	98.4	00.3	97.8	97.9	89.3
$\mathbf{e}_{\mathcal{C}_{i}}^{d-1}$ (total)	86.0	81.6	88.5	66.7	93.3	66.9	98.4	98.1	98.6	97.1	95.0	88.1
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	98.9	100	94.9	100	96.9	99.2	99.2	100	99.8	99.8	98.7
Adobe Lightroom												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	87.7	39.1	100	57.7	100	67.5	98.8	65.0	97.8	80.4	96.9	66.5
$\mathbf{e}_{\mathcal{C}_{i}}^{d-1}$ (total)	98.9	46.4	100	71.8	100	78.5	100	66.9	99.3	83.1	99.5	71.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	97.2	82.7	100	97.4	100	94.5	100	77.0	97.6	94.0	98.6	88.5

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$	070 C	$\mathcal{C}^{(G)}$	70s C	$\mathcal{C}^{(G)}$	2750 C	$\mathcal{C}^{(G)}$	<100 C	$\mathcal{C}^{(G)}$	erall C
bilinear interpolatio	n											
$\mathbf{e}_{\mathcal{C}_{i}}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
VNG interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	88.8	88.8	97.4	97.4	95.1	95.1	97.7	97.7	99.0	99.0	96.3	96.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	64.8	64.8	80.8	80.8	83.4	83.4	94.2	94.2	96.4	96.4	87.6	87.6
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	97.7	97.7	100	100	98.2	98.2	99.2	99.2	99.8	99.8	99.1	99.1
AHD interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	95.0	91.1	96.2	71.8	96.9	59.5	98.8	98.4	99.3	97.8	97.9	89.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	86.0	81.6	88.5	66.7	93.3	66.9	98.4	98.1	98.6	97.1	95.0	88.1
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	100	98.9	100	94.9	100	96.9	99.2	99.2	100	99.8	99.8	98.7
Adobe Lightroom												
$\mathbf{e}_{\mathcal{C}_{i}}$ (total)	87.7	39.1	100	57.7	100	67.5	98.8	65.0	97.8	80.4	96.9	66.5
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	98.9	46.4	100	71.8	100	78.5	100	66.9	99.3	83.1	99.5	71.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	97.2	82.7	100	97.4	100	94.5	100	77.0	97.6	94.0	98.6	88.5

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$	070 C	$\mathcal{C}^{(G)}$	70s C	$\mathcal{C}^{(G)}$	2750 C	$G^{(G)}$	K100 C	$\mathcal{C}^{(G)}$	erall C
bilinear interpolatio	on											
$\mathbf{e}_{\mathcal{C}_i}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	▶ gre	end	channe	l con	figurat	ion c	an be d	deter	rmined	8.ee t	99.8
VNG interpolation		ma	ost re	eliably								
$\mathbf{e}_{\mathcal{C}_{i}}$ (total)	88.8	► blo	ock-b	ased C	CFA s	ynthes	sis ap	proach	sup	erior ii	1 ^{96.3}	96.3
$\mathbf{e}_{\mathcal{C}_i}^{\mathbf{d}^{-1}}$ (total)	64.8	64.8 vir	tually	all ca	ses	83.4		94.2				87.6
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.7											99.1
AHD interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	95.6	91.1	96.2	71.8	96.9	59.5	- 08.8	98.4	99.3	97.8	97.9	89.3
$\mathbf{e}_{\mathcal{C}_{i}}^{d-1}$ (total)	86.0	81.6	88.5	66.7	93.3	66.9	98.4	98.1	98.6	97.1	95.0	88.1
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	100	98.9	100	94.9	100	96.9	99.2	99.2	100	99.8	99.8	98.7
Adobe Lightroom												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	87.7	39.1	100	57.7	100	67.5	98.8	65.0	97.8	80.4	96.9	66.5
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	98.9	46.4	100	71.8	100	78.5	100	66.9	99.3	83.1	99.5	71.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.2	82.7	100	97.4	100	94.5	100	77.0	97.6	94.0	98.6	88.5

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$	070 C	$\mathcal{C}^{(G)}$	70s C	$\mathcal{C}^{(G)}$	2750 C	$\mathcal{C}^{(G)}$	K100 C	$\mathcal{C}^{(G)}$	erall C
hilinear internolatio	n											
$\mathbf{e}_{\mathcal{C}_i}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
VNG interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	88.8	88.8	97.4	97.4	95.1	95.1	97.7	97.7	99.0	99.0	96.3	96.3
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (total)	64.8	64.8	80.8	80.8	83.4	83.4	94.2	94.2	96.4	96.4	87.6	87.6
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (block)	97.7	97.7	100	100	98.2	98.2	99.2	99.2	99.8	99.8	99.1	99.1
AHD interpolation												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	95.0	91.1	96.2	71.8	96.9	59.5	98.8	98.4	99.3	97.8	97.9	89.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	86.0	81.6	88.5	66.7	93.3	66.9	98.4	98.1	98.6	97.1	95.0	88.1
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	98.9	100	94.9	100	96.9	99.2	99.2	100	99.8	99.8	98.7
Adobe Lightroom												
$\mathbf{e}_{\mathcal{C}_i}$ (total)	87.7	39.1	100	57.7	100	67.5	98.8	65.0	97.8	80.4	96.9	66.5
$\mathbf{e}_{\mathcal{C}_{i}}^{d-1}$ (total)	98.9	46.4	100	71.8	100	78.5	100	66.9	99.3	83.1	99.5	71.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	97.2	82.7	100	97.4	100	94.5	100	77.0	97.6	94.0	98.6	88.5

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$)70 C	$\mathcal{C}^{(G)}$	70s <i>C</i>	$\mathcal{C}^{(G)}$	2750 C	$\mathcal{C}^{(G)}$	<100 C	$\mathcal{C}^{(G)}$	erall C
bilinear interpolatio	n											
$\mathbf{e}_{\mathcal{C}_{i}}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d^{-1}}$ (total)	100	100	100	100	100	100	99.2	99.2	100	100	99.8	99.8
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (block)	100	▶o gre	enc	channel	con	figurati	on c	an be c	leter	mine	d 99.8	99.8
VNG interpolation		me	SUR	eliably								
$\mathbf{e}_{\mathcal{C}_{i}}$ (total)	88.8	blo	ck-b	ased C	FA s	ynthes	is ap	proach	sup	erior i	n ^{96.3}	96.3
$\mathbf{e}_{\mathcal{C}_i}^{d-1}$ (total)	64.8	64.8 virt	ually	/ all cas	ses							87.6
$\mathbf{e}_{C_i}^{d-1}$ (block)	971	N7 roli	abili	tv done	nde	to som		tont or	the	COUR	009.1	99.1
		Tell	abili	ty depe	inus	10 3011	16 6	vieni oi	i uie	; 50un	66	55.1
AHD interpolation		of	the i	mage	HUS	10 3011	10 0/	Ktent O	r une	50un	66	55.1
$AHD interpolation \mathbf{e}_{C_i} (total)$	95.0-	of t	the i	mage	-06.0	59.5	-08.8		00.3	-97.8		89.3
AHD interpolation	95. 6 86.0	of 1 91.1 81.6	88.5	mage 71.8 66.7	93.3	50.5 66.9	98.4	98.1	98.6	97.8 97.1	- 07.9 95.0	89.3 88.1
$\begin{aligned} & \text{AHD interpolation} \\ & \mathbf{e}_{\mathcal{C}_i} \text{(total)} \\ & \mathbf{e}_{\mathcal{C}_i}^{d-1} \text{(total)} \\ & \mathbf{e}_{\mathcal{C}_i}^{d-1} \text{(block)} \end{aligned}$	95. 6 86.0 100	of 1 01.1 81.6 98.9	88.5	mage 71.8 66.7 94.9	93.3 100	59.5 66.9 96.9	98.4 99.2	98.1 99.2	98.6 100	97.8 97.1 99.8	95.0 99.8	89.3 88.1 98.7
$\begin{array}{l} AHD interpolation \\ \mathbf{e}_{\mathcal{C}_{i}} (\text{total}) \\ \mathbf{e}_{\mathcal{C}_{i}}^{d-1} (\text{total}) \\ \mathbf{e}_{\mathcal{C}_{i}}^{d-1} (\text{block}) \\ Adobe \ Lightroom \end{array}$	95. - 86.0 100	of 1 81.6 98.9	88.5	mage 71.8 66.7 94.9	93.3 100	58.5 66.9 96.9	98.4 99.2	98.1 99.2	98.6 100	97.8 97.1 99.8	95.0 9 9.8	89.3 88.1 98.7
$\begin{array}{l} \mathbf{e}_{C_{i}}^{-1} (\text{total}) \\ \mathbf{e}_{C_{i}}^{d-1} (\text{total}) \\ \mathbf{e}_{C_{i}}^{d-1} (\text{total}) \\ \mathbf{e}_{C_{i}}^{d-1} (\text{block}) \\ Adobe \ Lightroom \\ \mathbf{e}_{C_{i}}^{-1} (\text{total}) \end{array}$	95.6- 86.0 100 87.7	of 1 91.1 81.6 98.9 39.1	88.5 100	mage 71.3 66.7 94.9 57.7	93.3 100	50.5 66.9 96.9 67.5	98.4 99.2 98.8	98.1 99.2 65.0	98.6 100 97.8	97.3 97.1 99.8 80.4	95.0 9 9.8 96.9	89.3 88.1 98.7 66.5
$ \begin{array}{l} \mathbf{A}_{ID}^{-1} \text{ interpolation} \\ \mathbf{e}_{C_{i}}^{-1} \text{ (total)} \\ \mathbf{e}_{C_{i}}^{d-1} \text{ (total)} \\ \mathbf{e}_{C_{i}}^{d-1} \text{ (block)} \\ \text{Adobe Lightroom} \\ \mathbf{e}_{C_{i}}^{-1} \text{ (total)} \\ \mathbf{e}_{C_{i}}^{d-1} \text{ (total)} \\ \end{array} $	95. 6 - 86.0 100 87.7 98.9	of 1 91.1 81.6 98.9 39.1 46.4	100 100	71.8 66.7 94.9 57.7 71.8	93.3 100 100	58.5 66.9 96.9 67.5 78.5	98.4 98.2 98.8 100	98.1 99.2 65.0 66.9	98.6 100 97.8 99.3	97.1 99.8 80.4 83.1	07.0 95.0 99.8 96.9 99.5	 89.3 88.1 98.7 66.5 71.8

Influence of Image Size

> analysis of smaller image blocks of particular interest for the manipulation detection

percentage of correctly determined configurations for all blocks of all images (CFA synthesis, block based)

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$	070 C	$\mathcal{C}^{(G)}$	70s C	$\mathcal{C}^{(G)}$	2750 C	$\mathcal{C}^{(G)}$	(100 C	$\mathcal{C}^{(G)}$	erall C
AHD interpolation												
256×256	98.7	95.7	99.2	92.1	98.6	91.2	98.1	97.2	99.0	97.4	98.7	96.2
512×512	99.1	96.5	99.4	93.7	99.0	93.4	98.7	98.1	99.4	98.1	99.1	97.3
1024 × 1024	99.7	97.1	98.7	94.2	99.1	95.1	98.8	98.4	99.8	99.2	99.4	98.2
Adobe Lightroom												
256×256	92.7	65.3	99.4	83.9	99.3	81.9	99.1	52.0	96.7	79.8	96.9	70.2
512×512	94.4	72.6	99.9	90.0	100	88.7	99.3	56.6	96.7	88.2	97.3	76.8
1024×1024	95.4	79.0	100	96.8	100	92.9	99.7	66.0	96.3	91.1	97.4	82.1

Influence of Image Size

analysis of smaller image blocks of particular interest for the manipulation detection

percentage of correctly determined configurations for all blocks of all images (CFA synthesis, block based)

	$\mathcal{C}^{(G)}$	200 C	$\mathcal{C}^{(G)}$	070 C	$\mathcal{C}^{(G)}$	70s C	$\mathcal{C}^{(G)}$	2750 C	$\mathcal{C}^{(G)}$	(100 C	$\mathcal{C}^{(G)}$	verall C
AHD interpolation												
256×256	98.7	95.7	99.2	92.1	98.6	91.2	98.1	97.2	99.0	97.4	98.7	96.2
512 × 512	99.1	96.5	99.4	93.7	99.0	93.4	98.7	98.1	99.4	98.1	99.1	97.3
1024 × 1024	99.7	97.1	98.7	94.2	99.1	95.1	98.8	98.4	99.8	99.2	99.4	98.2
Adobe Lightroom												
256×256	92.7	65.3	99.4	83.9	99.3	81.9	99.1	52.0	96.7	79.8	96.9	70.2
512×512	94.4	72.6	99.9	90.0	100	88.7	99.3	56.6	96.7	88.2	97.3	76.8
1024×1024	95.4	79.0	100	96.8	100	92.9	99.7	66.0	96.3	91.1	97.4	82.1

 configuration of Adobe Lightroom images is particularly harder to determine for smaller block sizes

▷ local, signal-adaptive post-processing?

JPEG Post-compression

green channel configuration $\mathcal{C}^{(\textbf{G})}$

 green channel configuration can be determined relatively reliable for JPEG qualities as low as 90

JPEG Post-compression

green channel configuration $\mathcal{C}^{(G)}$

complete configuration $\ensuremath{\mathcal{C}}$

- green channel configuration can be determined relatively reliable for JPEG qualities as low as 90
- complete configuration estimation is more vulnerable to JPEG

Concluding Remarks

- CFA pattern configuration is valuable additional knowledge in the forensic examination of digital camera images
- in this study: efficient method to determine the CFA pattern
 - ▷ approximate solution to the CFA synthesis problem
 - two-stage, block-based approach
 - ▷ requires only 1 linear filtering step per image
- promising results despite the overly simplistic assumptions

Limitations

strong post-processing and JPEG compression hamper a reliable identifictation

Future work

- extend the CFA synthesis method to more sophisticated demosaicing procedures
 separate filter coefficients for horizontal/vertical edges
- allow for 'neutral' decision (CFA pattern not known)

Faculty of Computer Science Institute of Systems Architecture, Privacy and Data Security Research Group

Thanks for your attention

Questions?

Matthias Kirchner Technische Universität Dresden

Matthias Kirchner gratefully receives a doctorate scholarship from Deutsche Telekom Stiftung, Bonn, Germany.