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Resampling Detection

I resizing / scaling is a common digital image processing primitive

. pre- or post-processing; or part of more complex manipulations
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Resampling Detection

I resizing / scaling is a common digital image processing primitive

. pre- or post-processing; or part of more complex manipulations

I resampling to a new image grid; involves an interpolation step
I interpolation introduces periodic linear correlations between neighboring pixels
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I analysis and detection of interpolation artifacts is of interest in forensic settings,
but also in steganalysis or digital watermarking

M. Kirchner Linear Row and Column Predictors for the Analysis of Resized Images slide 1 of 11



Interpolation of 1D Signals

s(x) =
∞X

χ=−∞
h(x− χ)s(χ) (x ∈ R, χ ∈ Z)

I interpolation weights h(x− χ) depend on the relative position δx = x− bxc,
which is a periodic function: δx = δx+1

. ω =
q

p
with p⊥ q =⇒ δωχ′ = δω(χ′+p)

. interpolation weights are periodic with p
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Interpolation of 1D Signals
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∞X
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Analysis of Resampled Signals
I state-of-the-art resampling detection relies on linear predictor residue

[Popescu & Farid, TSP 2005], [Kirchner, MMSec 2008]

I samples are modeled as linear combination of their neighbors

ei = s′i −
X
|k|≤K
k 6=0

αk s
′
i+k

I large absolute prediction errors indicate minor degree of linear dependence
I interpolation causes periodic artifacts in the residue signal ei

α−1 α1
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I state-of-the-art resampling detection relies on linear predictor residue

[Popescu & Farid, TSP 2005], [Kirchner, MMSec 2008]

I samples are modeled as linear combination of their neighbors

ei = s′i −
X
|k|≤K
k 6=0

αk s
′
i+k

I large absolute prediction errors indicate minor degree of linear dependence
I interpolation causes periodic artifacts in the residue signal ei

fixed predictor coefficients
throughout the whole signal

(EM estimate
or pre-set)
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Analysis of Resampled Signals

s(x) =
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Analysis of Resampled Signals
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I fixed predictor coefficients α are not ideal to model interpolated signals

I phase-dependent coefficients α(i) would better reflect the actual correlation for a
specific sample s′i

s′i =
X
|k|≤K
k 6=0

α
(i)
k s′i+k + ei

I scaling / resizing with scaling factor ω−1 = p/q: α(i) = α(i+lp)

I upsampling: ∀i ∃α(i) ei = 0 (for suitable neighborhood sizes K)

I downsampling: model error depends on interpolation kernel and scaling factor
(never vanishes for linear interpolation kernel)

I explicit model for linear correlations in scaled / resized signals

. estimation of coefficients α(i)?

“average” correlation
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A Refined Model

I fixed predictor coefficients α are not ideal to model interpolated signals
I phase-dependent coefficients α(i) would better reflect the actual correlation for a

specific sample s′i

s′i =
X
|k|≤K
k 6=0

α
(i)
k s′i+k + ei

I scaling / resizing with scaling factor ω−1 = p/q: α(i) = α(i+lp)

I upsampling: ∀i ∃α(i) ei = 0 (for suitable neighborhood sizes K)

I downsampling: model error depends on interpolation kernel and scaling factor
(never vanishes for linear interpolation kernel)

I explicit model for linear correlations in scaled / resized signals

. estimation of coefficients α(i)?
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A Refined Model

I fixed predictor coefficients α are not ideal to model interpolated signals
I phase-dependent coefficients α(i) would better reflect the actual correlation for a

specific sample s′i

s′i−ηi =
X
|k|≤K
k 6=0

α
(i)
k

`
s′i+k−ηi+k

´
+ ei quantization / rounding noise

I scaling / resizing with scaling factor ω−1 = p/q: α(i) = α(i+lp)

I upsampling: ∀i ∃α(i) ei = 0 (for suitable neighborhood sizes K)

I downsampling: model error depends on interpolation kernel and scaling factor
(never vanishes for linear interpolation kernel)

I explicit model for linear correlations in scaled / resized signals

. estimation of coefficients α(i)?
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Resizing of Digital Images

I assumption: separable interpolation kernel

. effects of resizing can be analyzed for each row / column independently

. all pixels within one row / column are equally correlated
with their vertical / horizontal neighbors

r(i−3)

r(i−2)

r(i−1)

r(i)

r(i+1)

r(i+2)

r(i+3)
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Resizing of Digital Images

I assumption: separable interpolation kernel

. effects of resizing can be analyzed for each row / column independently

. all pixels within one row / column are equally correlated
with their vertical / horizontal neighbors

r(i−3)

r(i−2)

r(i−1)

r(i)

r(i+1)

r(i+2)

r(i+3)

r(i) − η(i) =
X
|k|≤K
k 6=0

α
(i)
k

“
r(i−k) − η(i−k)

”
+ e(i)

=
`
R(i) −N(i)

´
·α(i) + e(i)

I one regression per row / column

I linear regression model to estimate ‘tailored’
predictior coefficients
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Estimation of Predictor Coefficients

I ideal case: vanishing model error e(i) (e. g. for upsampling)

r(i) − η(i) =
“
R(i) −N(i)

”
·α(i)

measurement errors on both sides

. total least squares (TLS) estimate α̂(i)

r̂(i) = R̂(i) · α̂(i) such that
‚‚‚hR(i), r(i)

i
−
h
R̂(i), r̂(i)

i‚‚‚
F
→ min

I ideal world hardly ever matches reality; model error is negligible only if

. interpolation parameters permit a complete model

→ downsampling?

. neighborhood size is chosen correctly

→ unknown!

I large model error violates homoscedasticy assumption

r(i) −
“
η(i) + e(i)

”
=
“
R(i) −N(i)

”
·α(i)

I TLS estimates may become instable
I but: resampling detection does not require exact knowledge of α
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Estimation of Predictor Coefficients

I ideal case: vanishing model error e(i) (e. g. for upsampling)

r(i) − η(i) =
“
R(i) −N(i)

”
·α(i)

measurement errors on both sides

. total least squares (TLS) estimate α̂(i)

example: estimates for 150 % bilinear upsampling (ω = 2/3,K = 3)

4 5 6 7 8 9 10 11 12 13 14

-1.5

-1

-0.5

0

0.5

1

1.5

row index i

α̂
(i)
1

3
2

1 1
3

α̂
(i)
3

1
2

0 0

α̂
(i)
2 − 3

2
− 1

3
0

theoretical coefficients

I ideal world hardly ever matches reality; model error is negligible only if

. interpolation parameters permit a complete model

→ downsampling?

. neighborhood size is chosen correctly

→ unknown!

I large model error violates homoscedasticy assumption

r(i) −
“
η(i) + e(i)

”
=
“
R(i) −N(i)

”
·α(i)

I TLS estimates may become instable
I but: resampling detection does not require exact knowledge of α

M. Kirchner Linear Row and Column Predictors for the Analysis of Resized Images slide 6 of 11



Estimation of Predictor Coefficients

I ideal case: vanishing model error e(i) (e. g. for upsampling)

r(i) − η(i) =
“
R(i) −N(i)

”
·α(i)

measurement errors on both sides

. total least squares (TLS) estimate α̂(i)

example: estimates for 150 % bilinear upsampling (ω = 2/3,K = 3)

4 5 6 7 8 9 10 11 12 13 14

-1.5

-1

-0.5

0

0.5

1

1.5

row index i

α̂
(i)
1

3
2

1 1
3

α̂
(i)
3

1
2

0 0

α̂
(i)
2 − 3

2
− 1

3
0

I periodic artifacts in predictor
coefficients can be exploited
for detection of resizing

I ‘direct’ analysis instead of
implicit measurement via
the predictor residue
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A Simplified Model

ω = 5/4
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I bias towards left and right neighbors gradually varies
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A Simplified Model

ω = 5/4

I bias towards left and right neighbors gradually varies

I simplified predictor model: r(i) = R(i) · β(i) + ε(i)

. weighted least squares (WLS) estimate β̂(i)

I one possible (very coarse) analysis: di = β̂
(i)
−1− β̂

(i)
1

β
(3)
−1 > β

(3)
1β

(1)
−1 < β

(1)
1
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Spectral Analysis

I resizing causes periodic artifacts in the predictor coefficients, or their differences di
I typical detectors work in the frequency domain (Fourier spectrum)

but: estimated coefficients are error-prone and hardly exhibit a perfectly periodic behavior

. robust spectral density estimation

here: based on Spearman’s rank correlation coefficient [Ahdesmäki et al., BMC Bioinf. 2005]

S%(f) =
LX

l=−L
%(l) exp(−2πifl)
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I typical detectors work in the frequency domain (Fourier spectrum)

but: estimated coefficients are error-prone and hardly exhibit a perfectly periodic behavior

. robust spectral density estimation

here: based on Spearman’s rank correlation coefficient [Ahdesmäki et al., BMC Bioinf. 2005]

downsampling to 80 %, cubic spline interpolation, 512× 512 image
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Experimental Setup
I test database of ≈1100 never-compressed images (five different camera models)

from the Dresden Image Database [Gloe & Böhme, ACM SAC 2010]

I resizing of the green channel with ImageMagick’s convert

. four different interpolation kernels

bilinear bicubic windowed sinc cubic spline

-filter Triangle Catrom Lanczos Cubic

I analysis of the center 512× 512 region, neighborhood size K = 3

decision criterion

ρ =
maxS%

medianS%

0 π/4 π/2

robust density estimate S%

max

median
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Results for Downsampling

I benchmark detector: Popescu & Farid’s EM-based global predictor [Popescu & Farid, 2005]

detection rate at 1% false acceptance rate (TP0.01), area under the ROC curve (AUC)

0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

scaling factor ω−1

TP0.01

0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

scaling factor ω−1

AUC

interpolation kernels

Bilinear

detection method

row / column
Popescu & Farid

I row / column model has strengths for more sophisticated kernels
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I superior (or at least comparable) detection results for row / column model
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Results for Downsampling

I benchmark detector: Popescu & Farid’s EM-based global predictor [Popescu & Farid, 2005]

ROC curves for downsampling to 80 %
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I row / column model has strengths for more sophisticated kernels

M. Kirchner Linear Row and Column Predictors for the Analysis of Resized Images slide 10 of 11



Concluding Remarks

I characteristic structure of resized images suggests row / column predictors to
analyze traces of interpolation
. one linear regression per row / column
. measure periodic artifacts in a series of predictor coefficients

I experiments show promising results compared to state-of-the-art

but overall results for kernels beyond bilinear interpolation leave room for improvements

limitation

I no straight-forward extension to general geometric transformations

future work

I distinguish upsampled
from downsampled images

I incorporate image models
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analyze traces of interpolation
. one linear regression per row / column
. measure periodic artifacts in a series of predictor coefficients

I experiments show promising results compared to state-of-the-art

but overall results for kernels beyond bilinear interpolation leave room for improvements

limitation

I no straight-forward extension to general geometric transformations

future work

I distinguish upsampled
from downsampled images

I incorporate image models ??
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Faculty of Computer Science Institute of Systems Architecture, Privacy and Data Security Research Group

Thanks for your attention

Questions?

Matthias Kirchner

Technische Universität Dresden
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