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Image Forensics and JPEG Compression

Image Forensics

I use image statistics for identification of
source device or detection of manipulations

I variety of different forensic methods can be
found in the literature

I existing schemes work well under laboratory
conditions
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The Curse of JPEG Compression

(?)

I lossy compression is likely to smooth out subtle artifacts of previous manipulations
I a lot of forensic methods are vulnerable to post-compression

but: JPEG artifacts can itself be exploited for forensic purposes
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Resampling Detection

I image manipulations often rely on geometric transformations
(scaling, rotation, . . . ) of images or parts thereof
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Resampling Detection

I image manipulations often rely on geometric transformations
(scaling, rotation, . . . ) of images or parts thereof

I resampling to a new image grid; involves an interpolation step
I interpolation introduces periodic linear correlations between neighboring pixels

s1,1 s1,2
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s3,1 s3,2 s3,3

0.5

0.5

0.5

0.5
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bilinear up-
sampling (×2)

I resampling artifacts can be detected by the analysis of linear predictor residue

[Popescu & Farid, 2005], [Kirchner, 2008]
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Detection Scheme

t − 2 t − 1 t t + 1 t + 2

I predictor residue: e(ωt′) = s(ωt′)−
KX

k=−K

αks(ωt′ + ωk) (α0 := 0)

I large absolute prediction errors indicate minor degree of linear dependence

I optimal weights α can be determined with an EM algorithm [Popescu & Farid, 2005]

or set to a fixed linear filter mask [Kirchner, 2008]

I p-map: p(ωt′) ∝ exp (−σ|e(ωt′)|τ )

I measure for the strength of linear dependence
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I predictor residue: e(ωt′) = s(ωt′)−
KX

k=−K

αks(ωt′ + ωk) (α0 := 0)

I large absolute prediction errors indicate minor degree of linear dependence
I optimal weights in the example: α = (0.5, 0, 0.5)

. every second sample defaults to 0
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Typical Detection Results

Original

p-map DFT(p-map)

105 %

120 %

* each spectrum graph has been individually normalized and processed with a maximum filter

I resampling causes periodic

pattern in the p-map and
distinct peaks in the p-map’s
DFT

I peak position is characteristic for
resampling parameters
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I typical resampling detectors
employ a frequency domain
peak detector
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Notation

original image resampled image resampling detection
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Notation

original image resampled image resampling detection

JPEG JPEG

pre-compression (QFpre) post-compression (QFpost)

re-compression

QF = (QFpre, QFpost)

current literature only considered post-compression
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JPEG post-compression

I resampling detectors suffer from severe

performance loss after post-compression

I JPEG cuts off high frequency information
. subtle periodic traces in the prediction

error are smoothed out
I JPEG introduces 8× 8 pixel block structure

. increased prediction error at block
boundaries leads to new periodic artifacts

. JPEG peaks must be ignored

I current literature concludes that resampling detection under moderate JPEG
post-compression (QFpost < 95) is practically impossible

[Popescu & Farid, 2005], [Mahdian & Saic, 2008]
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JPEG (p)re-compression

I digital images are often already in JPEG
format before being further processed

I resampling affects the shape of the
pre-compression 8× 8 block structure

I increased prediction error at shifted block
boundaries will introduce periodic artifacts to
the p-map

I shifted JPEG peaks: fpre =

˛̨̨̨
(A′)−1

„
k /8
l /8

«
−
»
(A′)−1

„
k /8
l /8

«–˛̨̨̨
I depending on the pre-compression quality, shifted JPEG peaks can be more robust

to post-compression than resampling peaks

. resampling detection in re-compressed images benefits from additional peaks!
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Frequency Domain Detection Procedure

I periodic resampling artifacts can be best measured in the frequency domain

General Procedure

I pre-processing to reduce disturbing low-
frequency components

. windowing [Popescu & Farid, 2005] not optimal

0 π/2

0

1

I decision based on the existence of distinct peaks

. correlation [Popescu & Farid, 2005] and cumulative periodogram [Kirchner, 2008] based
approaches not optimal

exhaustive search best for one distinct peak
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Pre-processing

I input: DFT of the p-map, P = DFT(p-map)

I normalization

Pn = P
‹

Pmedian

I peak finding

Pm(f ) =

8<:
Pn(f ) if Pn(f ) = max

w∈{−W,...,W}2
Pn(f + w)

0 else.

I remove JPEG post-compression peaks

remove frequency components
(k /8 , l /8), (k, l) ∈ {−4, . . . , 4}2

I gamma correction

Pγ = max(Pm) ·
„

Pm

max(Pm)

«γ
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Decision Making

I resampling leads to several resampling
and shifted JPEG peaks

I under basic geometric transformations
(scale, rotate, shear), these peaks are
arranged in groups of at most 4 sym-
metric peaks with the same distance
from the DC frequency

I decision criterion:

δ = max
r>rt

Σr
‹

median
r>rt

Σr

sum of the 4 maximum
peaks on each radius r
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Experimental Setup

I test database consists of 200 never-compressed images (1024× 1024) from the
‘Dresden Image Database’ [Gloe & Böhme, 2010]

I bilinear resizing, JPEG pre- and post-compression using ImageMagick’s convert

21 scaling factors in
the range [0.5, . . . , 2]

QF = {40, 50, 70, 75, 80, 90, 95, 98, 100}2

I p-map is calculated from the luminance channel for two fixed linear filter masks
[Kirchner, 2008]:

α8 =

24−1/4 1/2 −1/4
1/2 0 1/2

−1/4 1/2 −1/4

35, α4 =

24 0 1/4 0
1/4 0 1/4

0 1/4 0

35
I altogether more than 400 000 detector runs (size of analyzed region fixed to 512× 512)
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I bilinear resizing, JPEG pre- and post-compression using ImageMagick’s convert

21 scaling factors in
the range [0.5, . . . , 2]

QF = {40, 50, 70, 75, 80, 90, 95, 98, 100}2

I p-map is calculated from the luminance channel for two fixed linear filter masks
[Kirchner, 2008]:

α8 =

24−1/4 1/2 −1/4
1/2 0 1/2

−1/4 1/2 −1/4

35, α4 =

24 0 1/4 0
1/4 0 1/4

0 1/4 0

35
I altogether more than 400 000 detector runs (size of analyzed region fixed to 512× 512)

Kirchner & Gloe On Resampling Detection in Re-Compressed Images slide 11 of 14



Baseline Detection Results
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I downsampling not detectable

(as per upsampling for QFpost < 90)
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Re-Compression Detection Results

filter masks:
α4 α8

(FAR = 1 %)

re-compression 80 → 90

0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

de
te

ct
io

n
ra

te

scaling factor

0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

de
te

ct
io

n
ra

te

scaling factor

I JPEG re-compression improves
performance for upsampling

I downsampling only detectable for
low pre-compression quality

I pre-compression should be lower
than (at least equal to)
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Concluding Remarks

I resampling detection in re-compressed images is of high practical relevance

. images are often already JPEGs before being further processed
I reliable detection after JPEG compression was believed to be a lost cause

but: (p)re-compression introduces additional artifacts in terms of shifted JPEG peaks in
the p-map’s spectrum

I results from 400 000 detector runs show notable performance gain for upsampling
compared to the post-compression scenario

I downsampling remains to be the most problematic geometric transformation
I detector is blind to transformations that interfere with post-compression peaks
I sufficient size of the analyzed image region is critical to distinguish resampling and

post-compression peaks

I concept of shifted peaks also applies to CFA interpolation peaks
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Pre- and Post-Compression Quality

I detection rates for 150 % upscaling (FAR = 1 %)

40 50 60 70 75 80 90 95 98 100

40 70 83.5 94.5 99.5 99.5 99 100 100 100 99.5
50 8.5 61 82.5 98 99 99.5 99.5 99 99.5 99.5
60 2 11.5 63 96 100 100 100 100 100 100
70 1.5 2 7 86 98 99.5 100 100 100 100
75 4 3 2.5 55 94 95.5 100 100 100 100
80 3 1.5 1.5 24 71 91.5 100 100 100 100
90 2.5 2.5 1.5 5.5 10 25.5 99.5 100 100 100
95 3 2.5 2 7 11 11.5 87.5 100 100 100
98 2.5 3 2.5 5.5 9 10 56 99.5 100 100
100 2 3 3 5.5 8.5 10 58.0 99 100 100

* 2.5 2 2.5 5 9 10.5 52.5 98.5 100 100

post-compression quality

pr
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