

Faculty of Computer Science Institute of Systems Architecture, Privacy and Data Security Research Group

On Resampling Detection in Re-Compressed Images

WIFS 2009

<u>Matthias Kirchner</u>, Thomas Gloe Technische Universität Dresden

London, 2009/12/07

Image Forensics

- use image statistics for identification of source device or detection of manipulations
- variety of different forensic methods can be found in the literature
- existing schemes work well under laboratory conditions

Image Forensics

- use image statistics for identification of source device or **detection of manipulations**
- variety of different forensic methods can be found in the literature
- existing schemes work well under laboratory conditions

The Curse of JPEG Compression

- Iossy compression is likely to smooth out subtle artifacts of previous manipulations
- a lot of forensic methods are vulnerable to post-compression

Image Forensics

Kirchner & Gloe

- use image statistics for identification of source device or **detection of manipulations**
- variety of different forensic methods can be found in the literature
- existing schemes work well under laboratory conditions

The Curse of JPEG Compression (?)

- Iossy compression is likely to smooth out subtle artifacts of previous manipulations
- a lot of forensic methods are vulnerable to post-compression
- but: JPEG artifacts can itself be exploited for forensic purposes

Image Forensics

Kirchner & Gloe

- use image statistics for identification of source device or **detection of manipulations**
- variety of different forensic methods can be found in the literature
- existing schemes work well under laboratory conditions

The Curse of JPEG Compression (?)

- Iossy compression is likely to smooth out subtle artifacts of previous manipulations
- a lot of forensic methods are vulnerable to post-compression
- but: JPEG artifacts can itself be exploited for forensic purposes

Resampling Detection

image manipulations often rely on geometric transformations (scaling, rotation, ...) of images or parts thereof

On Resampling Detection in Re-Compressed Images

Resampling Detection

- image manipulations often rely on geometric transformations (scaling, rotation, ...) of images or parts thereof
- resampling to a new image grid; involves an interpolation step
- ▶ interpolation introduces periodic linear correlations between neighboring pixels

 resampling artifacts can be detected by the analysis of linear predictor residue [Popescu & Farid, 2005], [Kirchner, 2008]

large absolute prediction errors indicate minor degree of linear dependence

- ► predictor residue: $e(\omega t') = s(\omega t') \sum_{k=-K}^{K} \alpha_k s(\omega t' + \omega k)$ $(\alpha_0 := 0)$
- ► large absolute prediction errors indicate minor degree of linear dependence
- optimal weights in the example: $\alpha = (0.5, 0, 0.5)$ • every second sample defaults to 0

- ► predictor residue: $e(\omega t') = s(\omega t') \sum_{k=-K}^{k} \alpha_k s(\omega t' + \omega k)$ $(\alpha_0 := 0)$
- ► large absolute prediction errors indicate minor degree of linear dependence
- optimal weights α can be determined with an EM algorithm [Popescu & Farid, 2005] or set to a fixed linear filter mask [Kirchner, 2008]

- ► predictor residue: $e(\omega t') = s(\omega t') \sum_{k=-K}^{N} \alpha_k s(\omega t' + \omega k)$ $(\alpha_0 := 0)$
- large absolute prediction errors indicate minor degree of linear dependence
- optimal weights α can be determined with an EM algorithm [Popescu & Farid, 2005] or set to a fixed linear filter mask [Kirchner, 2008]
- **• p-map:** $p(\omega t') \propto \exp(-\sigma |e(\omega t')|^{\tau})$
- measure for the strength of linear dependence

Typical Detection Results

each spectrum graph has been individually normalized and processed with a maximum filter

- resampling causes periodic pattern in the p-map and distinct peaks in the p-map's DFT
- peak position is characteristic for resampling parameters

 $\mathbf{f}_{\text{re}} = \left| \left(\mathbf{A}' \right)^{-1} \begin{pmatrix} k \\ l \end{pmatrix} - \left[\left(\mathbf{A}' \right)^{-1} \begin{pmatrix} k \\ l \end{pmatrix} \right] \right|$

 typical resampling detectors employ a frequency domain peak detector

resampling detection

On Resampling Detection in Re-Compressed Images

current literature only considered post-compression

 resampling detectors suffer from severe performance loss after post-compression

- resampling detectors suffer from severe performance loss after post-compression
- ► JPEG cuts off high frequency information
 - ▷ subtle periodic traces in the prediction error are smoothed out

- resampling detectors suffer from severe performance loss after post-compression
- ► JPEG cuts off high frequency information
 - ▷ subtle periodic traces in the prediction error are smoothed out
- ► JPEG introduces 8 × 8 pixel block structure
 - increased prediction error at block boundaries leads to new periodic artifacts
 - ▷ JPEG peaks must be ignored

On Resampling Detection in Re-Compressed Images

On Resampling Detection in Re-Compressed Images

- resampling detectors suffer from severe performance loss after post-compression
- ► JPEG cuts off high frequency information
 - ▷ subtle periodic traces in the prediction error are smoothed out
- ► JPEG introduces 8 × 8 pixel block structure
 - increased prediction error at block boundaries leads to new periodic artifacts
 - ▷ JPEG peaks must be ignored

 current literature concludes that resampling detection under moderate JPEG post-compression (QF_{post} < 95) is practically **impossible** [Popescu & Farid, 2005], [Mahdian & Saic, 2008]

 digital images are often already in JPEG format before being further processed

- digital images are often already in JPEG format before being further processed
- resampling affects the shape of the pre-compression 8 × 8 block structure

- digital images are often already in JPEG format before being further processed
- resampling affects the shape of the pre-compression 8 × 8 block structure
- increased prediction error at shifted block boundaries will introduce periodic artifacts to the p-map

► shifted JPEG peaks:
$$\mathbf{f}_{\text{pre}} = \left| (\mathbf{A}')^{-1} \begin{pmatrix} k/8 \\ l/8 \end{pmatrix} - \left[(\mathbf{A}')^{-1} \begin{pmatrix} k/8 \\ l/8 \end{pmatrix} \right] \right|$$

On Resampling Detection in Re-Compressed Images

On Resampling Detection in Re-Compressed Images

- digital images are often already in JPEG format before being further processed
- resampling affects the shape of the pre-compression 8 × 8 block structure
- increased prediction error at shifted block boundaries will introduce periodic artifacts to the p-map

► shifted JPEG peaks:
$$\mathbf{f}_{\text{pre}} = \left| (\mathbf{A}')^{-1} \begin{pmatrix} k/8 \\ l/8 \end{pmatrix} - \left[(\mathbf{A}')^{-1} \begin{pmatrix} k/8 \\ l/8 \end{pmatrix} \right] \right|$$

- depending on the pre-compression quality, shifted JPEG peaks can be more robust to post-compression than resampling peaks
 - ▷ resampling detection in re-compressed images **benefits** from additional peaks!

periodic resampling artifacts can be best measured in the frequency domain

General Procedure

 pre-processing to reduce disturbing lowfrequency components

decision based on the existence of distinct peaks

periodic resampling artifacts can be best measured in the frequency domain

General Procedure

- pre-processing to reduce disturbing lowfrequency components
 - ▷ windowing [Popescu & Farid, 2005] not optimal

decision based on the existence of distinct peaks

periodic resampling artifacts can be best measured in the frequency domain

General Procedure

- pre-processing to reduce disturbing lowfrequency components
 - ▷ windowing [Popescu & Farid, 2005] not optimal

- decision based on the existence of distinct peaks
 - ▷ correlation (Popescu & Farid, 2005) and cumulative periodogram (Kirchner, 2008) based approaches not optimal

periodic resampling artifacts can be best measured in the frequency domain

General Procedure

- pre-processing to reduce disturbing lowfrequency components
 - windowing [Popescu & Farid, 2005] not optimal

decision based on the existence of distinct peaks
 correlation Popescu & Farid, 2005) and cumulative periodogram [Kirchner, 2008] based approaches not optimal
 exhaustive search best for one distinct peak

• input: DFT of the p-map, P = DFT(p-map)

On Resampling Detection in Re-Compressed Images

- ▶ input: DFT of the p-map, P = DFT(p-map)
- normalization

$$P_n = P / P_{\text{median}}$$

▶ input: DFT of the p-map, P = DFT(p-map)

normalization

 $P_n = P \,/\, P_{\text{median}}$

peak finding

$$P_m(\mathbf{f}) = \begin{cases} P_n(\mathbf{f}) & \text{if } P_n(\mathbf{f}) = \max P_n(\mathbf{f} + \mathbf{w}) \\ & \mathbf{w} \in \{-W, \dots, W\}^2 \\ 0 & \text{else.} \end{cases}$$

▶ input: DFT of the p-map, P = DFT(p-map)

normalization

 $P_n = P \,/\, P_{\text{median}}$

peak finding

$$P_m(\mathbf{f}) = \begin{cases} P_n(\mathbf{f}) & \text{if } P_n(\mathbf{f}) = \max P_n(\mathbf{f} + \mathbf{w}) \\ \mathbf{w} \in \{-W, \dots, W\}^2 \\ 0 & \text{else.} \end{cases}$$

remove JPEG post-compression peaks

remove frequency components $(k/8, l/8), (k, l) \in \{-4, \dots, 4\}^2$

• input: DFT of the p-map, P = DFT(p-map)

normalization

 $P_n = P \,/\, P_{\text{median}}$

peak finding

$$P_m(\mathbf{f}) = \begin{cases} P_n(\mathbf{f}) & \text{if } P_n(\mathbf{f}) = \max P_n(\mathbf{f} + \mathbf{w}) \\ \mathbf{w} \in \{-W, \dots, W\}^2 \\ 0 & \text{else.} \end{cases}$$

remove JPEG post-compression peaks

remove frequency components $(k/8, l/8), (k, l) \in \{-4, \dots, 4\}^2$

gamma correction

$$P_{\gamma} = \max(P_m) \cdot \left(\frac{P_m}{\max(P_m)}\right)^{\gamma}$$

Decision Making

 resampling leads to several resampling and shifted JPEG peaks

Decision Making

- resampling leads to several resampling and shifted JPEG peaks
- under basic geometric transformations (scale, rotate, shear), these peaks are arranged in groups of at most 4 symmetric peaks with the same distance from the DC frequency

decision criterion:

 $\delta = \max_{r > r_t} \Sigma_r / \operatorname{median}_{r > r_t} \Sigma_r$

Decision Making

- resampling leads to several resampling and shifted JPEG peaks
- under basic geometric transformations (scale, rotate, shear), these peaks are arranged in groups of at most 4 symmetric peaks with the same distance from the DC frequency

sum of the 4 maximum peaks on each radius r

Experimental Setup

- test database consists of 200 never-compressed images (1024 × 1024) from the 'Dresden Image Database' [Gloe & Böhme, 2010]
- bilinear resizing, JPEG pre- and post-compression using ImageMagick's convert

Experimental Setup

test database consists of 200 never-compressed images (1024 × 1024) from the 'Dresden Image Database' [Gloe & Böhme, 2010]

bilinear resizing, JPEG pre- and post-compression using ImageMagick's convert

21 scaling factors in the range [0.5, . . . , 2]

 $\mathsf{QF}\,=\,\{40,\,50,\,70,\,75,\,80,\,90,\,95,\,98,\,100\}^2$

Experimental Setup

test database consists of 200 never-compressed images (1024 × 1024) from the 'Dresden Image Database' [Gloe & Böhme, 2010]

bilinear resizing, JPEG pre- and post-compression using ImageMagick's convert

21 scaling factors in the range [0.5, ..., 2]

 $QF = \{40, 50, 70, 75, 80, 90, 95, 98, 100\}^2$

p-map is calculated from the luminance channel for two fixed linear filter masks [Kirchner, 2008]:

$$\boldsymbol{\alpha}\mathbf{8} = \begin{bmatrix} -\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \end{bmatrix}, \quad \boldsymbol{\alpha}\mathbf{4} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{4} & 0 \end{bmatrix}$$

altogether more than 400 000 detector runs (size of analyzed region fixed to 512 × 512)

filter masks: $\alpha_4 \quad \alpha_8$ (FAR = 1 %)

- reliable detection for a wide range of scaling factors
- upsampling better detectable than downsampling

filter masks: $\alpha_4 \quad \alpha_8$ (FAR = 1 %)

- reliable detection for a wide range of scaling factors
- upsampling better detectable than downsampling

- reliable detection for a wide range of scaling factors
- upsampling better detectable than downsampling

- JPEG post-compression decreases detectability
- downsampling not detectable

- reliable detection for a wide range of scaling factors
- upsampling better detectable than downsampling

- JPEG post-compression decreases detectability
- downsampling not detectable

- reliable detection for a wide range of scaling factors
- upsampling better detectable than downsampling

- JPEG post-compression decreases detectability
- downsampling not detectable

- reliable detection for a wide range of scaling factors
- upsampling better detectable than downsampling

- JPEG post-compression decreases detectability
- downsampling not detectable (as per upsampling for QF_{post} < 90)

Re-Compression Detection Results

 JPEG re-compression improves performance for upsampling

Re-Compression Detection Results

 JPEG re-compression improves performance for upsampling

Re-Compression Detection Results

- JPEG re-compression improves performance for upsampling
- downsampling only detectable for low pre-compression quality

Re-Compression Detection Results

- JPEG re-compression improves performance for upsampling
- downsampling only detectable for low pre-compression quality

 pre-compression should be lower than (at least equal to) post-compression quality

Concluding Remarks

- resampling detection in re-compressed images is of high practical relevance
 images are often already JPEGs before being further processed
- reliable detection after JPEG compression was believed to be a lost cause
- **but:** (p)re-compression introduces additional artifacts in terms of **shifted JPEG peaks** in the p-map's spectrum
 - results from 400 000 detector runs show notable performance gain for upsampling compared to the post-compression scenario

Concluding Remarks

- resampling detection in re-compressed images is of high practical relevance
 images are often already JPEGs before being further processed
- reliable detection after JPEG compression was believed to be a lost cause
- **but:** (p)re-compression introduces additional artifacts in terms of **shifted JPEG peaks** in the p-map's spectrum
 - results from 400 000 detector runs show notable performance gain for upsampling compared to the post-compression scenario
 - downsampling remains to be the most problematic geometric transformation
 - detector is blind to transformations that interfere with post-compression peaks
 - sufficient size of the analyzed image region is critical to distinguish resampling and post-compression peaks

Concluding Remarks

- resampling detection in re-compressed images is of high practical relevance
 images are often already JPEGs before being further processed
- reliable detection after JPEG compression was believed to be a lost cause
- **but:** (p)re-compression introduces additional artifacts in terms of **shifted JPEG peaks** in the p-map's spectrum
 - results from 400 000 detector runs show notable performance gain for upsampling compared to the post-compression scenario
 - downsampling remains to be the most problematic geometric transformation
 - detector is blind to transformations that interfere with post-compression peaks
 - sufficient size of the analyzed image region is critical to distinguish resampling and post-compression peaks
 - concept of shifted peaks also applies to CFA interpolation peaks

Faculty of Computer Science Institute of Systems Architecture, Privacy and Data Security Research Group

Thanks for your attention

Questions?

<u>Matthias Kirchner</u>, Thomas Gloe Technische Universität Dresden

Matthias Kirchner gratefully receives a doctorate scholarship from Deutsche Telekom Stiftung, Bonn, Germany.

Pre- and Post-Compression Quality

• detection rates for 150 % upscaling (FAR = 1%)

	40	50	60	70	75	80	90	95	98	100
40	70	83.5	94.5	99.5	99.5	99	100	100	100	99.5
50	8.5	61	82.5	98	99	99.5	99.5	99	99.5	99.5
60	2	11.5	63	96	100	100	100	100	100	100
70	1.5	2	7	86	98	99.5	100	100	100	100
75	4	3	2.5	55	94	95.5	100	100	100	100
80	3	1.5	1.5	24	71	91.5	100	100	100	100
90	2.5	2.5	1.5	5.5	10	25.5	99.5	100	100	100
95	3	2.5	2	7	11	11.5	87.5	100	100	100
98	2.5	3	2.5	5.5	9	10	56	99.5	100	100
100	2	3	3	5.5	8.5	10	58.0	99	100	100
*	2.5	2	2.5	5	9	10.5	52.5	98.5	100	100

post-compression quality

pre-compression quality

On Detection of Resampling in Re-Compressed Images