
582 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 4, DECEMBER 2008

Hiding Traces of Resampling in Digital Images
Matthias Kirchner and Rainer Böhme

Abstract—Resampling detection has become a standard tool
for forensic analyses of digital images. This paper presents new
variants of image transformation operations which are unde-
tectable by resampling detectors based on periodic variations in
the residual signal of local linear predictors in the spatial domain.
The effectiveness of the proposed method is supported with ev-
idence from experiments on a large image database for various
parameter settings. We benchmark detectability as well as the
resulting image quality against conventional linear and bicubic
interpolation and interpolation with a sinc kernel. These early
findings on “counter-forensic” techniques put into question the
reliability of known forensic tools against smart counterfeiters in
general, and might serve as benchmarks and motivation for the
development of much improved forensic techniques.

Index Terms—Digital image forensics, resampling detection,
tamper hiding, undetectable resampling.

I. INTRODUCTION

O VER the past couple of years, digital imaging has ma-
tured to become the dominant technology for creating,

processing, and storing the world’s pictorial memory. This tech-
nology undoubtedly brings many advantages, but at the same
time, it has never been so easy to manipulate images, often
in such a perfection that forgery is visually indistinguishable
from authentic photographs. As a result, the triumph of digital
imaging harms the trustworthiness of pictures, particularly for
situations in which society bases important decisions on them:
in court (where photographs act as pieces of evidence), in sci-
ence (where photographs provide empirical proofs), and at the
ballot box (press photographs shape public opinion).

New streams of research have addressed the authenticity
problem of digital images. A branch of it deals with tamper
detection, which can be broadly subdivided into two main
approaches. One approach is to track particularities of the
image-acquisition process and report conspicuous deviations
as indications for possible manipulation [1]–[4]. The second
approach tries to identify traces from specific image-processing
functions [5]–[8]. Although forensic toolboxes based on these
approaches are already quite good at unveiling naive manipula-
tions, we believe that they still solve the real problem only at its
surface because little is known about the reliability of forensic
techniques against a farsighted counterfeiter, who is aware of
detection techniques.

In this paper, we change the perspective and introduce
counter-forensic methods in the form of targeted attacks
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Fig. 1. Similarities and differences between tamper hiding, steganography, and
attacks on robust digital watermarks.

against a specific technique to detect traces of resampling in
uncompressed images proposed by Popescu and Farid [6].
Section II contains a general consideration on the new subfield
of research and its relation to more established disciplines as
well as proposals for a harmonized terminology. Sections III
and IV briefly recall the basics of interpolation methods and
their detection before our countermeasures are presented in
Section V. The design and results of a quantitative evaluation
are reported in Section VI. Section VII discusses implications
for future research on forensics and counterforensics.

II. RELATIONS TO STEGANOGRAPHY, STEGANALYSIS,
AND DIGITAL WATERMARKING

Untraceable image manipulation, or tamper hiding [9], is a
very young area of research. This justifies brief reflections on
the relation to closely related fields in the area of multimedia
security to develop consistent terminology (see Fig. 1).

Tamper hiding shares common goals with steganography
[10]. Both try to achieve undetectability by preserving as many
image properties as possible. Yet, steganography and tamper
hiding differ in the amount and source of information to hide,
and the extent to which an image can be altered. Most stegano-
graphic methods are designed to embed a given message by
minimizing the number of changes to the cover (hence, keep its
semantic) while tamper hiding conceals the mere information
that larger parts of the original medium have been modified
with the aim to change its semantic.

Steganalysis, as a counterpart to steganography, aims at un-
veiling the presence of a hidden message in a specific medium
without having access to the original cover. A general analogy
between steganalysis and image forensics becomes evident if
we consider the act of forging images as information which is
hidden inconspicuously in an image. Yet another parallel ex-
ists between tamper hiding techniques and attacks against dig-
ital watermarking schemes. Contrary to steganalysis, attacks
against (robust) digital watermarks are designed to remove the
embedded information rather than only detect it [11], [12]. In
this sense, detectable manipulation artifacts can be understood
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as an inherent watermark, which tamper hiding techniques aim
to remove or suppress. Therefore, we deem it appropriate to
refer to specific tamper hiding methods as attacks against spe-
cific image forensic techniques.

Different tamper hiding techniques can be classified by their
position in the process chain. We call a method integrated if
it replaces or interacts with the image manipulation operation
(e.g., an undetectable copy-move tool as a plug-in to image pro-
cessing software) as opposed to postprocessing, which refers to
algorithms that try to cover all traces after manipulation with
conventional methods. Note that this distinction reflects the two
different points of view on tamper hiding. An integrated attack is
more closely related to steganography (hiding while processing)
whereas postprocessing approaches resemble watermarking at-
tacks (removing traces).

A second classification is borrowed from the context of ste-
ganalyis and watermarking attacks. We call a method targeted,
if it avoids traces detectable with one particular forensic tech-
nique, which the developer of the attack usually knows. Con-
versely, universal attacks try to maintain or correct as many sta-
tistical properties of the image in order to conceal manipulations
even when presented to unknown forensic tools. This appears to
be the more difficult task: correct or at least plausible image sta-
tistics imply compliance with stochastic image models, which
are not fully understood. So attackers can never be sure that a
forgery is free of detectable artifacts.

Further interesting parallels are as follows.
• The design space for a steganographic algorithm is gov-

erned by a tradeoff between capacity and security. A sim-
ilar relation can be found for attacks against digital image
forensics. The stronger a manipulating operation interferes
with the inherent image structure, the harder it is to feign
an authentic image.

• Attacks against digital watermarks are often evaluated by
the retained image quality after successful removal of a
watermark [13]. Similarly, there appears to be a practical
tradeoff between security (i.e., undetectability) and quality
for tamper-hiding techniques. Plausible postprocessing,
such as JPEG compression or blurring, may suppress
detectable manipulation artifacts but, at the same time, go
along with a loss in image quality. We conclude that every
evaluation of attacks against digital image forensics should
always be benchmarked against two criteria, namely, 1)
undetectability and 2) image quality.

In the light of these considerations, we will now present a tar-
geted tamper-hiding technique for undetectable resampling.

III. PRELIMINARIES

Let be the
column vector of integer pixel intensities of a image,
where the th element holds the pixel value with coordinates

, , and . Spatial co-
ordinates are mapped to vector indices by a family of functions

, where is the number of rows in the image

(1)

The inverse mapping is then defined as

(2)

We write as a resampled
version of a source image

(3)

Matrix has dimension and contains the
weights of an interpolation filter with respect
to an affine 2 2 transformation matrix . More specifically,
element corresponds to the interpolation weight of orig-
inal pixel in the computation of transformed pixel . Let

be a family of functions which return
the relative position of an original pixel and a transformed
pixel with respect to a transformation . For notational con-
venience, we omit indices and (number of rows in the
original and transformed image, respectively)

(4)

Operator denotes element-wise multiplication and
is a normalization vector. The resam-

pling matrix is then specified by

(5)

We use scaling and rotation matrices and for up-
scaling , downscaling without prefiltering ,
and rotation by the counterclockwise angle ,
respectively

(6)

Unless otherwise stated, we use a linear interpolation kernel and
set .

IV. DETECTING TRACES OF RESAMPLING

Many attempts of image forgery rely on scaling and rota-
tion operations, which involve a resampling process. As a re-
sult, scholars in image forensics have developed methods to de-
tect traces of resampling in bitmap images. Present detectors
rely on resampling artifacts observable in either the transformed
image’s derivatives [14]–[16] or in the residue of a local linear
predictor [6]. Since the derivative-based approaches are not ca-
pable of detecting arbitrary affine transformations [14], [15], or
suffer from high false positive rates [16], this paper focuses on
Popescu and Farid’s state-of-the-art detector [6]. It is known as
a reliable and extensively tested [17] tool.

Interpolation algorithms are key to smooth and visually
appealing image transformation [18]; however, a virtually
unavoidable side effect of interpolation is that it creates linear
dependences between adjacent pixels. As shown in [14] and
[16], the strength of the linear dependence varies periodically
with the cycle length, which itself depends on the resampling
parameters. Popescu and Farid’s detection method supports
identifying the presence of such periodic artifacts. The intensity
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of each pixel can be modelled as a weighted sum of pixels in
its local spatial neighborhood (with and

integer) plus a residual

(7)

The local linear predictor for pixel , is defined as

(8)

where is a matrix of ones, and denotes the Kro-
necker product. Vector contains the unobservable weights
of , with the center element . We call
the neighborhood matrix of pixel , where the

th element is set to 1 if pixel is the th local spatial
neighbor of pixel

for

otherwise.
(9)

A so-called -map is defined as a vector of
probability measures for the strength of linear dependence for
each pixel based on a simplified two-state model. It can be ob-
tained from any given image as follows: Pixels are assumed
to belong to one of two sets and . Set contains all
pixels with high linear dependence whereas set comprises
all pixels with low linear dependence. Popescu and Farid pro-
pose the expectation maximization (EM) algorithm [19], an iter-
ative two-stage procedure, to estimate the probabilities for each
pixel’s assignment to , respectively, and the unknown
weights . First, the E-step uses the Bayes theorem to calculate
the probability for each pixel belonging to set

(10)

Evaluating this expression requires:
1) a conditional distribution assumption for

for and for
, where denotes a normal distribution

with mean and standard deviation , and denotes
a uniform distribution on the interval ;

2) weights (initialized with
in the first round);

3) (initialized with the signal’s empirical standard devi-
ation);

4) a normalizing assumption saying
.

In the M-step, vector is updated using a weighted least squares
estimator

(11)

Fig. 2. Results of resampling detection for original image (top row) and 5% up-
sampling (bottom row). Complete �-maps are displayed in the middle column;
frames mark the parts depicted on the left. Resampling artifacts lead to charac-
teristic peaks in the corresponding spectrum (rightmost pictures).

Matrix has dimension and contains the ele-
ments of all local neighborhoods as stacked row vectors (i.e.,

). Diagonal ma-
trix holds the corresponding conditional probabilities of
(10), hence . The new estimate for is used to
update the local linear predictor and to calculate as a
weighted standard deviation of the residuals

(12)

The E-step and M-step are iterated until convergence.
Resampling leaves a conspicuous periodical pattern in the

so-obtained -maps. This pattern becomes most evident in the
frequency domain, using discrete Fourier transformation (DFT),
where it shows up as distinct peaks that are typical for the re-
sampling parameters. To enhance the visibility of the character-
istic peaks, Popescu and Farid propose a contrast function [6].
It is composed of a radial weighting window, which attenuates
low frequencies, and a gamma correction. The absolute values
of the resulting complex plane can be visualized and presented
to a human forensic investigator.

Fig. 2 illustrates the detection process. It compares an orig-
inal grayscale image of size 350 350 to a processed version
scaled up1 with a linear interpolation to 105% of the original
(left column). The resulting -maps are displayed in the middle.
As expected, the rather chaotic -map of the original image turns
to a salient periodic structure after transformation. This explains
the different appearance of the spectrum (right column). To en-
hance the quality in print, each spectrum graph in this article is
normalized to span the full intensity range. The range of spec-
tral magnitudes is visualized by a gradient scale on top of each
spectrum. We further apply a maximum filter to improve the vis-
ibility of the peaks.

1Upscaling is particularly prone to leave detectable traces in the redundancy
of newly inserted pixels. So it forms a critical test for our methods.
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V. COUNTERMEASURES AGAINST RESAMPLING DETECTION

In the hand of forensic investigators, Popescu and Farid’s pow-
erful detection method [6] might raise the temptation to use its re-
sults as proof of evidence in legal, social, and scientific contexts.
However, one must bear in mind that forensic methods merely
provide indications and are by orders of magnitude less depend-
able thanother techniques,suchasdecentcryptographicauthenti-
cationschemes.Incontrasttocryptography,multimediaforensics
remains an inexact science without rigourous security proofs. To
draw attention to this problem, we will present different methods
to perform image transformations that are almost undetectable
by the aforementioned detector. We will identify some basic de-
tection assumptions and describe methods to deliberately violate
these assumptions. In this sense, the presented techniques can be
considered as targeted attacks against the detection algorithm.

Prior to a detailed description of our attacks, we point out
that we consider only never-compressed images. It is known that
virtually all resampling detectors fail after moderate JPEG com-
pression. The reason for this is twofold: First, periodic blocking
artifacts interfere with periodic resampling artifacts.2 Second,
lossy compression blurs subtle periodic traces and, therefore,
renders reliable detection impossible. Despite the existence of
such a “universal” attack, we believe that research on targeted
attacks against resampling detection is relevant. JPEG images
are per se more likely to raise suspicion and, for example, news
agencies may insist on never-compressed images.

A. Attacks Based On Nonlinear Filters

To detect suspicious periodic traces of previous resampling
operations, the detector employs a local linear predictor, which
expresses each pixel as the weighted sum of adjacent pixels
(7). The detection method is therefore based on the assumption
of linear dependences between pixels in a close neighborhood.
Hence, all kinds of nonlinear filters , applied as
the postprocessing step, are candidates for possible attacks (i.e.,

). In this paper, we use the median filter ,
a frequently used primitive operation in image processing [20],
which replaces each pixel with the median of all pixels in a sur-
rounding window of a defined shape and size. This acts as a
lowpass filter, however, with floating cutoff frequency. Besides
its nonlinear smoothing nature, median filtering seems an appro-
priate choice to serve as an attack against resampling detection
as it is known to produce regions of constant or nearly constant
intensity values [21]. Thus, median filtering destroys periodic
dependencies between neighboring pixels, especially in homo-
geneous parts of the image.

Fig. 3 shows detection results for the 5% upscaled test image,
postprocessed with a 5 5 median filter.3 This straightforward
attack can be called successful: periodic artifacts in the esti-
mated -map are largely suppressed, and consequently, the char-
acteristic peaks in the spectrum have disappeared. However, at
the same time, it becomes evident that the visual quality of the
postprocessed image has suffered from noticeable blurring. This
side effect can be attenuated using subtler (i.e., smaller) or more

2This can be precluded to some degree (e.g., by suppressing characteristic
JPEG frequencies in the �-map’s spectrum).

3Magnified versions of the test image are depicted in Fig. 15.

Fig. 3. Results after upsampling by 5% and postprocessing with a 5� 5 median
filter: characteristic peaks in the spectrum vanish; however, the image appears
excessively blurred.

sophisticated filters (e.g., multistage median filters [22]), even
though at the cost of higher detectability. Therefore, despite
being effective in certain cases, the prospects of naive nonlinear
filters for practical attacks remain limited.

B. Attacks Based on Geometric Distortion

A second basic assumption essential for successful resam-
pling detection is the equidistance of the underlying sampling
lattice. The detection method exploits the periodic structure
in mapping the discrete lattice position from the source to the
transformed image, in which a constant sequence of relative
position of source and target pixels is repeated over
the entire plane, cf (5). Periodic artifacts can be avoided if this
systematic similarity is broken up.

Inspired by the effectiveness of geometric attacks against wa-
termarking schemes [11], we have explored geometric distortion
as the building block for attacks against resampling detection.
To disrupt the specific similarity, each individual pixel’s target
position is computed from the transformation relation with a
random disturbance vector superimposed, that is

(13)

Horizontal and vertical distortion and are set to be noise
samples, independently drawn from a zero mean Gaussian dis-
tribution . We use the notation for the th
disturbance vector which displaces original pixel and for
the modified resampling matrix (i.e., ). Parameter
controls the strength of distortion.

Note that naive geometric distortion may leave strong vis-
ible jitter noise in the resulting image, which is perceived most
visually disturbing at straight lines and edges. Horizontal dis-
tortion frays pronounced vertical structures and vice-versa. An
extension of (13) evades such quality loss by modulating the
strength of distortion adaptively from the local image content.
More precisely, we apply two Sobel edge detectors [20] for
horizontal and for vertical disturbance, respectively, to the
transformed image without any distortion

(14)

Sobel filters are linear filters constructed equivalent to the pre-
dictor of (8), with a neighborhood matrix and filter
coefficients

and

(15)
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Fig. 4. Block diagram of geometric distortion with edge modulation.

Fig. 5. Results after upsampling by 5% with geometric distortion of strength
� � 0.4. Comparison between naive distortion (top) and edge modulation using
horizontal and vertical Sobel filters (bottom).

hence . As pixels in the area of sharp edges
will yield a large filter response, the modified attack construc-
tion ensures that less distortion is applied to regions where the
visible impact would be most harmful otherwise. Since the fil-
ters are applied to an undistorted transformed image, this at-
tack requires the image to be resampled twice, as depicted in
the block diagram of Fig. 4.

Fig. 5 reports detection results for our 5% upscaled test image
now using resampling with a geometric distortion of strength

. The results demonstrate that geometric distortion is
capable of eliminating the characteristic traces from the -map
and its spectrum. In line with our expectations, edge modulation
mitigates the loss in image quality considerably.

C. Dual-Path Approach to Undetectable Resampling

While geometric distortion with edge modulation generates
already good results, we found from a comprehensive evalua-
tion of many different transformation parameters that the unde-
tectability can be further improved by applying different opera-
tions to the high- and low-frequency components of the image
signal. Similar approaches have already been applied success-
fully for noise reduction [23] and attacks against spatial water-
marks [24].

Adhering to a simple additive image model [20, Ch. 3], we
use a dual-path approach to undetectable resampling. It com-
bines median filtering (Section V-A) and geometric distortion
(Section V-B) as depicted in the block diagram of Fig. 6. The
image is modelled as sum of a low-frequency component and a
high-frequency component . The two compo-
nents are separated with a median filter .

Fig. 6. Block diagram of the dual-path approach: combination of median filter
for a low-frequency image component and geometric distortion with edge mod-
ulation for the high-frequency component.

Fig. 7. Dual-path method: 5% upsampling, 7� 7 median filter for a low-fre-
quency component combined with geometric distortion �� � 0.3) and edge
modulation.

First, in the low-frequency path, the low-frequency component
of the output image is obtained by applying a median filter di-
rectly to the resampled source image . Second, a high-fre-
quency component is extracted from the source image by sub-
tracting the result of a median filter (other lowpass filters are
conceivable as well). In the high-frequency path, this compo-
nent is resampled with geometric distortion and edge modula-
tion, where the edge information is obtained from the resampled
image prior to the median filter. The final image is computed
by adding up both components

(16)

This attack has two parameters: 1) the size of the median filter
and 2) the standard deviation of the geometric distortion .

Fig. 7 reports the results of the dual-path approach for the 5%
upscaled test image. Observe that the resulting -map is most
similar to the -map of the original (see Fig. 2). Further, no
suspicious peaks appear in its spectrum. The image quality is
preserved and no artifacts are visible (cf. Fig. 15).

VI. QUANTITATIVE EVALUATION

For a quantitative evaluation of our attacks against resam-
pling detection, we use a database of 500 never-compressed
8-bit grayscale images. All images were taken with a Canon
PowerShot S70 digital camera at full resolution (3112 2382
pixels) and stored in RAW format. In order to suppress pos-
sible interference from periodic patterns which might stem from
color filter array (CFA) interpolation inside the camera [1], each
image was downsampled by a factor two using nearest neighbor
interpolation prior to any subsequent processing. This prepro-
cessing was empirically found to be sufficient to reliably re-
move detectable traces of demosaicing by applying the CFA
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detector [1] to the downsized images. We applied our attacks
to a subset of 100 randomly chosen images, each resized and
rotated by various degrees. More specifically, scaling matrices

with and sampled in equidistant steps of
as well as rotation matrices with

and sampled in equidistant steps of were
used for a total of 3900 resampled images per parameter set-
ting. The remaining 400 images, further referred to as “training
set,” were used to determine the detector’s decision threshold,
cf. Section VI-B.

A. Performance Metrics

The performance metrics for the quantitative evaluation of the
proposed attacks are twofold. First of all, the most relevant cri-
terion is the (un)detectability of the conducted image transfor-
mations. We report detection rates (i.e., the fraction of correctly
detected manipulations) for fixed false acceptance rates (FARs)
of and , respectively. Lower values
indicate superior performance.

Any attempt to conceal resampling operations should not
only be judged by the achieved level of undetectability, but
also by the amount of image degradation in the resulting im-
ages compared to the resampled images with standard linear
interpolation. For our quantitative evaluation, we chose two
common image-quality metrics to assess the visual impact
of the proposed attacks

(17)

We report the metrics PSNR, where , and a
variant adjusted for human visual perception wPSNR (“ ”
for weighted). It has been argued that the latter metric is
a more valid indicator for the evaluation of attacks against
watermarking schemes [12]. Weights are computed from a
so-called noise visibility function (NVF), which emphasizes
image regions with high local variance and attenuates flat
regions and soft gradients. Among the two NVFs proposed in
[25], we have chosen the one based on a stationary generalized
Gaussian image model [25, (26)]. Both metrics are measured
in decibels. Higher values indicate superior image quality.

B. Automatic Detection of Resampling

As described in Section IV, the resampling detector relies on
finding periodic dependencies between pixels in a close neigh-
borhood. To identify forgeries automatically, Popescu and Farid
propose measuring the similarity between the -map of a given
image and a set of synthetically generated periodic patterns [6].
They have found empirically that the synthetic map for trans-
formation can be obtained by computing the distance be-
tween each point in the resampled lattice and the closest point
in the original lattice

(18)

As the detector lacks any prior knowledge about the actual
transformation parameters , the detection process involves an

exhaustive search in a sufficiently large set of candidate trans-
formation matrices.4 In all of our experiments, we use a set of

synthetic maps, 601 for scaling in the range of
, with sampled in equidistant steps of ,

and 91 for rotation in the range of , with sam-
pled in equidistant steps of . The maximum pair-
wise similarity between an empirical -map and all elements of

is taken as a decision criterion [6]

(19)

Function is the contrast function (Section IV) and
is a 2-D DFT. If exceeds a specific threshold , then
the corresponding image is flagged as resampled.5 We have
determined empirically for defined false acceptance rates
(cf. Section VI-A) by applying the detector to all 400 original
images of the training set.

Note that the decision criterion is not normalized with re-
spect to the dimension of the analyzed image. In order to com-
pare detection results from different resampling parameters, we
always crop the center 256 256 block of the resampled image
before it is presented to the detector.

C. Baseline Detection Results

To demonstrate the general effectiveness of the resampling
detection scheme, Fig. 8 reports the detection rates for scaling
(top) and rotation (bottom) using standard linear and bicubic
interpolation (i.e., the case without attack). Each data point re-
flects 100 resampled images. The size of the detection neigh-
borhood was set to . From the curves, we find perfect
detection of upsampling and rotation, and still high accuracy
for moderate downsampling. The decrease in detectability for
small is not surprising, as downsampling causes information
loss whereas it is more difficult to impute new pixels with id-
iosyncratic information.6 All in all, the results confirm a very
reliable detection for a wide range of transformation parame-
ters. Thus, Fig. 8 may serve as reference for the evaluation of
our attacks with respect to their capability to hide traces of such
image transformations.

D. Detectability of Sinc Interpolation

Before evaluating our targeted attacks against resampling de-
tection, we study the detector’s performance under sinc interpo-
lation. Only recently, Mahdian and Saic have shown that, under
an i.i.d. Gaussian signal model, ideal sinc interpolation will cir-
cumvent the formation of periodic artifacts in resampled images
[16]. Interpolation with a sinc kernel, despite its higher com-
putational demands, is therefore a critical benchmark for our
attacks. Due to its infinite support, the sinc kernel is hard to

4To follow our notation of resampling (4)–(6), it is necessary to use synthetic
scaling maps � to obtain the corresponding periodic pattern for an actual
transformation � .

5This is a very conservative measure as cases may exist where � � � al-
though the best-matching synthetic map does not correspond to the actual trans-
formation parameters. See Section VI-F for further discussion.

6As noted by Gallagher [14], phase-preserving upsampling by factor 2 (i.e.,
� ��� �� � ������ �����) is a sole exception that prevents the formation of
periodic artifacts.
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Fig. 8. Results of resampling detection after scaling (top) and rotation (bottom)
by varying amounts for false acceptance rates ��� � �� and ��� � ���,
respectively. One-hundred resampled images are behind each datapoint.

Fig. 9. Results of resampling detection after scaling using sinc-based interpo-
lation. Downscaling and slight upscaling are virtually undetectable.

handle in practice. Typical implementations truncate it with an
apodization function [26]. In our experiments, we used a rectan-
gular window of finite support . Fig. 9 reports detection rates
for scaling and kernels with support and . Ob-
serve that the detector indeed fails for downscaling and mod-
erate upscaling, but stronger upscaling still remains perfectly
detectable. The threshold which determines the transition from
undetectable to highly detectable scaling depends on the support
of the interpolation kernel. However, experiments have shown
that even doubling the already large support of yields
no further gain in undetectability, which confirms the need for
effective targeted attacks as an objective of this article. The ob-
served deviation from the theoretical case might be due to the
characteristics of typical image signals, which are, in general,
not i.i.d. Gaussian.

Note that similar results can be achieved with higher order
spline interpolation, which is asymptotically equivalent to sinc
interpolation [27]. So we refrain from reporting more details.

E. Detectability of Median Filtering

Postprocessing with a median filter was introduced as an ade-
quate attack in Section V-A. Fig. 10 reports detection rates (left)
and average image quality (right) for scaled and median filtered
images for filter sizes 3 3 and 7 7, respectively. While the
detection rates remain on a relatively stable level of about 60%
for the larger window size, the detectability for the 3 3 filtered
images shows a strong dependence on the actual scaling factor

. Generally, larger window sizes introduce a higher degree of
nonlinearity, resulting in less detectability in the upsampling
case. Interestingly, the 3 3 filter is preferable for downsam-
pled images, which follows from the comparatively “dense char-
acter” of downsized images. While larger windows tend to yield
smoother images with a generally increased linear dependence
between neighboring pixels, smaller windows will more likely
choose pixels with idiosyncratic image content and, thus, lead to
stronger local nonlinearities. However, the median filter has to
be carefully chosen as larger windows cause substantial losses
in image quality, which is observable in PSNR and wPSNR.
Hiding traces of rotation typically requires smaller windows; a
5 5 filter already achieves detection rates below 25%.

We have also tested the detector’s performance under multi-
stage median filtering [22], which results in less blurred output
images and increases image quality by up to 5 dB. However,
only strong downscaling can be successfully concealed while
upscaling remains detectable.

F. Detectability of Resampling With Geometric Distortion

Since for reasonable window sizes, median-filtered images
may suffer from extensive blurring, we have investigated the ef-
fect of geometric distortion in the resampling process. Fig. 11
shows the results for scaling with distortion of strength .
They reveal a substantial gain in undetectability compared to the
median filter. The curves indicate that edge modulation is ben-
eficial in terms of visual quality and detectability. More specifi-
cally, detection rates with edge modulation are on average 6–20
p.p. below those without edge modulation. At the same time,
the former yields an improvement in image quality (PSNR) of
about 4 dB.

While the increase in visual quality intuitively follows from
the signal adaptive modulation of the strength of distortion, the
lowered detectability seems puzzling at first sight. To under-
stand the observed decay, it is important to recall that the re-
ported detection rates solely reflect the fraction of transformed
images with , independent of whether the correct trans-
formation (i.e., the synthetic map ) was selected or not.
A synthetic map is considered as “correct” if the transformation
parameters and true do not differ by more than (i.e.,
tolerance percentage points). A closer examination of the
detection results suggests that for the majority of attacked im-
ages, the detector fails to find the correct transformation param-
eters. Table I exemplarily reports summary statistics for upsam-
pling with . Observe that not a single “detection suc-
cess” finds the correct synthetic map. Independent of the trans-
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Fig. 10. Evaluation of a median filter at different window sizes. Detection rates (left) and average image quality (right). Larger window sizes reduce detection
rates in the upscaling case; however, a small window is preferable for downscaling. Small windows retain higher image quality.

Fig. 11. Evaluation of geometric distortion �� � 0.4) with and without edge modulation. Detection rates (left) and image quality (right). Edge modulation yields
substantially better quality and superior detection results.

TABLE I
BREAKDOWN OF DETECTION DECISION

formation parameters, -maps smoothed by our attacks happen
to fit to some candidate synthetic maps with high amplitude in
the low-frequency coefficients. Plain geometric distortion cre-
ates smoother -maps due to a larger stochastic support and,
therefore, is more susceptible to such “false map” alarms.

G. Detectability of the Dual-Path Approach

Finally, Fig. 12 presents the results for the dual-path approach
for scaling (top row) and rotation (bottom row). As for resam-
pling with geometric distortion (Section VI-F), the strength of
distortion was set to 0.4. The frequency components have
been separated with 5 5 and 7 7 median filters, respectively.
For the chosen strength of distortion, the dual path generally
yields very low detection rates of less than 20% for all tested
resampling parameters .

The curves indicate that the filter size is not crucial with re-
spect to detectability (left column). However, smaller windows
might be preferred when image quality matters (right column).

From a comprehensive evaluation of different attack settings, we
have found that the level of undetectability is largely determined
by the strength of geometric distortion . Fig. 14 reports detec-
tion rates for sample scaling factors at varying
strengths of geometric distortion. The size of the median filter
was fixed to 5 5. Roughly speaking, the detector’s sensitivity
to geometric distortion can be well approximated by a step func-
tion. While too little distortion has practically no influence on
detectability, too much distortion is not rewarded with better un-
detectability. The minimum distortion necessary to yield satis-
factory results slightly varies for different resampling parame-
ters. However, seems to be a reasonably safe default.
It is important to note that a careful choice of is essential to
maintain acceptable image quality, because stronger distortion
will cause visually more perceivable image degradation.

H. Finding the Conditional Best Hiding Method

A direct comparison of the dual-path approach with geo-
metric distortion as described in Section V-B reveals an
advantage of the former especially for upscaling. Fig. 13 de-
picts comparative results for in terms of the achieved
gain in undetectability (left, solid line) and image quality
metrics (right). The curves indicate that, on average, the ad-
vantage of the dual-path approach increases with the scaling
factors ( ) up to ten percentage points at the cost of only
marginal compromises in image quality ( ). Neverthe-
less, for downscaling (and rotation, not printed due to space
constraints), plain geometric distortion appears to perform
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Fig. 12. Evaluation of dual-path approach for scaling (top row) and roation (bottom row). Detection rates (left column) and average image quality (right column)
for � � 0.4. The breakdown by window size of the median filter (5� 5 versus 7� 7) and false acceptance rates (FAR: 1% versus 50%). Observe the very low
detection rates independent of the window size for all resampling parameters. Smaller windows sizes in the low-frequency component retain better image quality.

Fig. 13. Comparison of geometric distortion and dual-path approach for scaling. Undetectability gain (left) and image quality (right). � � ���; 5� 5 median
filter; ��� � ��.

Fig. 14. Dual-path approach: detectability versus strength of distortion for
sample scaling factors; 5� 5 median filter; ��� � ��.

better with comparable detection rates, but notably better image
quality.

To further study the detectability differential between geo-
metric distortion and dual-path approach, we rewrite (16) as

(20)

where is the modified resampling matrix of (14) (i.e.,
function returns the difference signal between an
image resampled with geometric distortion and the dual-path
approach). Larger relative scaling factors increase the
difference between signals and . As a
result, the energy of the noise signal increases with

. Fig. 13 (left) includes a curve of average energy
measured by the square sum of differences ,
which grows with the increasing performance advantage of
the dual-path approach for . For downscaling, however,

grows even faster with increasing although
the performance of the dual-path approach does not improve
compared to resampling with geometric distorton (but image
quality deteriorates due to the specific noise of the dual-path
approach). Therefore, we conjecture that the dual-path approach
behaves very similar to resampling with geometric distortion
for moderate scaling and benefits from its specific signal-
and transformation-adaptive “postprocessing” only for larger
relative scaling factors.
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Fig. 15. Visual comparison: test image and image-quality metrics after resampling to 105%. From left to right: plain linear interpolation, 5� 5 median filtering,
geometric distortion with edge modulation (� � ���), dual-path approach (7� 7 median � � 0.3).

I. Robustness and Validation

Note that we have also tested the robustness of our results for
detectors with smaller and larger neighbor-
hoods. As the corresponding detection rates do not differ sub-
stantially from the reported figures, we conclude that our results
are fairly robust with regard to Popescu and Farid’s detector and
refrain from reporting them separately.

To validate the effectiveness of the proposed attacks against
related resampling detectors, we implemented Mahdian and
Saic’s derivative-based method [16], the most relevant alter-
native. It turned out that it is very difficult to find appropriate
decision thresholds for our images. For plain upsampling, we
found false acceptance rates as high as 30% at 100% correct de-
tection. These results do not match the performance of Popescu
and Farid’s method. As aggregated graphs for
are not very indicative, we compared the continuous score
for individual images resized with and without our attacks. In
almost every case, the score was lower after the attack. We
therefore conjecture that derivative-based resampling detection
will also fail on images resampled with our attacks.

VII. CONCLUSION

This paper has taken a critical view on the reliability of
forensic techniques as tools to generate evidence of authenticity
for digital images. In particular, we have pointed out how
tamper-hiding techniques, in general, can be integrated in a
broader ontology of multimedia security disciplines. The main
contribution of this paper is a presentation and evaluation of
three approaches to defeat a specific method of resampling
detection, which has been developed to unveil scaling and
rotation operations of digital images or parts thereof. These
attacks have turned out to be the most effective ones in a
broader research effort, which also led to a number of dead
ends. Some of the alternative attack methods are briefly doc-
umented in [9]. Among the successful methods, resampling
with edge-modulated geometric distortion (for downsampling
and rotation) and the dual-path approach (primarily for upsam-
pling), which complements the former by a median filter of the
low-frequency component of the image signal, achieved the
best performance and should be regarded as benchmarks for
other specific tamper-hiding techniques. At the same time, we
would like to point out that the resampling detector of Popescu

and Farid [6], against which our work in this article is targeted,
is, to the best of our knowledge, the most reliable detector of
standard interpolation. We have selected this particular detector
with the aim of building a sample attack against a powerful and
challenging method.

Apart from the detailed results presented so far, there are at
least two more general conclusions worth mentioning. First,
attacks which are integrated in the manipulation operation
appear to be more effective than others that work at a post-
processing step. This is plausible since information about the
transformation parameters is not available at the postprocessing
stage. Therefore, much stronger interference with the image
structure is necessary to cover up statistical traces of all possible
transformations. Second, a closer look at all quantitative results
suggests that downscaling and rotation are easier to conceal
than upscaling. This is plausible too, since downscaling causes
information loss, whereas it is more difficult to impute new
pixels with idiosyncratic information. This implies that larger
window sizes (for the median filter) and stronger geometric
distortion are necessary for upscaling to achieve similar levels
of (un)detectability as for downscaling.

As for the limitations, we consider this paper to be an early
and modest attempt in an interesting subfield. It is obvious
that our results hold only for the specific class of detectors and
we cannot rule out that image manipulations conducted with
our proposed methods are detectable with 1) other existing
forensic techniques or 2) new targeted detection methods that
are build with the intention to discover our attacks. While
this might trigger a new cat-and-mouse race between forensic
and counter-forensic techniques, we believe that such creative
competition is fruitful and contributes to a more holistic picture
on the possibilities and limitations of image forensics, an area
where much prior research has been done against the backdrop
of a fairly naive “adversary model”—a term borrowed from
cryptography, where anticipating strong and knowledgeable
adversaries has a longer tradition [28].

More research questions are abundant: It would be desirable
to have a formal framework that explains why the building
blocks (median filter, geometric distortion) effectively suppress
periodic linear residuals and how they interact. This could lead
to a theory that allows deriving the best method conditional to a
larger parameter space than explorable with experiments. In ad-
dition, each building block could be optimized separately (e.g.,
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replacing the median filter for the dual-path decomposition by
a more tailored filter, or introducing a weighted synthesis of
the components to minimize distortion). Further issues emerge
if local resampling in parts of larger images shall be concealed
[29], or when generalizing the methods to color images where
plausible CFA patterns have to be introduced.

On a more abstract level, one may ask the question as to
whether it is possible at all to construct provable secure tech-
niques under gentle assumptions. We conjecture that an ultimate
response is far distant and is probably linked to related “hard
problems,” such as the search for provable secure high-capacity
steganography (with realistic cover assumptions), and to the de-
velopment of much better stochastic image models.
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