STEGANOGRAPHY AND DIGITAL WATERMARKING
Determining the stego algorithm for JPEG images

T. Pevny and J. Fridrich

Abstract: The goal of forensic steganalysis is to detect the presence of embedded data and to
eventually extract the secret message. A necessary step towards extracting the data is
determining the steganographic algorithm used to embed the data. In the paper, we construct
blind classifiers capable of detecting steganography in JPEG images and assigning stego
images to six popular JPEG embedding algorithms. The classifiers are support vector
machines that use 23 calibrated DCT feature calculated from the luminance component.

1 Introduction

The goal of steganography is to hide the very presence of
communication by embedding messages in innocuous
looking objects, such as digital images. To embed the
data, the original (cover) image is slightly modified and
becomes the stego image. The embedding process is
usually controlled using a secret stego key shared
between the communicating parties. The most impor-
tant requirement of any steganographic system is
statistical undetectability of the hidden data given the
complete knowledge of the embedding mechanism and
the source of cover objects but not the stego key
(so-called Kerckhoffs” principle). Attempts to formalise
the concept of steganographic security include [1-4].

The goal of steganalysis is discovering the presence of
hidden messages and determining their attributes. In
practice, a steganographic scheme is considered secure if
no existing steganalytic attack can be used to distinguish
between cover and stego objects with success signifi-
cantly better than random guessing [5]. There are two
major classes of steganalytic methods—targeted attacks
and blind steganalysis. Targeted attacks use the knowl-
edge of the embedding algorithm [6], while blind
approaches are not tailored to any specific embedding
paradigm [7-13]. Blind approaches can be thought of as
practical embodiments of Cachin’s [2] definition of
steganographic security. It is assumed that ‘natural
images’ can be characterised using a small set of
numerical features. The distribution of features for
natural cover images is then mapped out by computing
the features for a large database of images. Using
methods of artificial intelligence or pattern recognition,
a classifier is then built to distinguish in the feature space
between natural images and stego images.

Avcibas et al. [9] were the first who proposed the idea
to use a trained classifier to detect and to classify robust
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data hiding algorithms. The authors used image quality
metrics as features and tested their method on three
watermarking algorithms. Avcibas et al. [10, 14] later
proposed a different set of features based on binary
similarity measures between the lowest bit-planes. Farid
et al. [8, 11] constructed the features from higher-order
moments of distribution of wavelet coefficients from
several high-frequency sub-bands and their local linear
prediction errors. Harmsen and Pearlman [13] proposed
to use the centre of gravity of the histogram character-
istic function to detect additive noise steganography in
the spatial domain. Inspired by this work, Xuan et al.
[12] used absolute moments of the histogram character-
istic function constructed in the wavelet domain for
blind steganalysis. Goljan et al. [15] calculate the
features as higher-order absolute moments of the noise
residual in the wavelet domain.

Compared with targeted schemes, blind approaches
have certain important advantages. They are potentially
capable of detecting previously unseen steganographic
methods and they can assign stego images to a known
steganographic algorithm based on the location of the
feature vector in the feature space. This is because
different steganographic algorithms introduce different
artefacts into images and thus leave a specific finger-
print. For example, the shrinkage in the F5 algorithm
[16] leaves a characteristic artefact in the histogram,
which consists of a larger number of zeros and slightly
decreased number of all non-zero DCT coefficients. In
contrast, other programs, such as OutGuess [17] or
model-based steganography [18], preserve the histo-
gram. By using a large number of features, rather than
just the histogram, we increase the chances that two
different embedding programs will indeed produce
images located in different parts of the feature space.

Knowing the program used to embed the secret data,
a forensic examiner can continue the steganalysis with
brute-force searches for the stego/encryption key and
eventually extract the secret message. Since JPEG
images are by far the most common image format in
current use, we narrow the study in this paper to the
JPEG format. Our goal is to construct blind stegana-
lysers for JPEG images capable of stego algorithm
identification that would give reliable results for JPEG
images of arbitrary quality factor and that would
correctly handle double-compressed images (which is
an issue so far largely avoided in previous works on
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steganalysis of JPEGs). Construction of such a classifier
requires large training image databases and extensive
computational and storage resources. In this paper, we
construct two steganalysers — a bank of classifiers for
single-compressed images that can reliably assign stego
images to six popular JPEG steganographic techniques
and a classifier that assigns double-compressed stego
images to either OutGuess or F5, which are the only two
programs that we tested that can produce double-
compressed images. This paper can be considered as an
extension of our previous work on this subject [7, 19].

In the next section, we describe the construction of
calibrated DCT features that will be used to construct
our classifiers. In Section 3, we give some implementa-
tion details of the support vector machines (SVMs)
used in this paper and discuss training and testing
procedures. We also describe the database of test images
for training and testing. In Section 4, we construct a
seven-class SVM multi-classifier that assigns single-
compressed JPEG images with a wide range of quality
factors to either the class of cover images or six JPEG
steganographic algorithms (F5 [16], OutGuess [17],
Steghide [20], JP Hide&Secek [21], model-based stegano-
graphy with and without deblocking [18, 22, 23]).
Section 5 is entirely devoted to steganalysis of double-
compressed images. We first explain how the process of
calibration must be modified to correctly account for
double compression. Then, we build a three-class SVM
that can assign a double-compressed JPEG image to
either the class of cover images or double-compressed
images embedded using F5 or OutGuess. The experi-
mental results from both classifiers are interpreted in
their corresponding sections. The paper is concluded in
Section 6.

2 DCT features

Our choice of the features for blind JPEG steganalysis is
determined by our highly positive previous experience
with DCT features [7] and the comparisons reported in
[19, 24]. Both studies report the superiority of JPEG
classifiers that use calibrated DCT features. We note
that the results presented here pertain to the selected
feature set and different results might be obtained for a
different feature set.

In this section, we briefly describe the features (see
Fig. 1), referring to [7] for more details. For now, let us
assume that the stego image has not been double
compressed. The process of calculating the features
starts with a vector functional F that is applied to the
stego JPEG image J;. For instance, F could be the
histogram of all luminance coefficients. The stego image
J1 is decompressed to the spatial domain, cropped by a
few pixels in each direction and recompressed with the
quantisation table from J; to obtain J,. The same vector
functional F is then applied to J,. The calibrated scalar
feature fis obtained as a difference, if F is a scalar, or an
L; norm if F is a vector or matrix

8 I|-1
y_ Sl Sy ey (LK) — iy

k+1 ’J’_Zl,]lzulwdll )

[F (/1) - F()|

@\
&

Fig. 1 Calibrated features f are obtained from functionals F

similar to the original cover image. This is because
the cropped stego image is perceptually similar to
the cover image and thus its DCT coefficients should
have approximately the same statistical properties as the
cover image. The cropping is important because the 8 x
8 grid of recompression is ‘out of sync’ with the previous
JPEG compression, which suppresses the influence
of the previous compression (and embedding) on the
coefficients of J,. The operation of cropping can
obviously be replaced with slight rescaling, rotation or
even non-linear warping (Stirmark). Because the
cropped and recompressed image is an approximation
to the cover JPEG image, the net effect of calibration is
a decrease in image-to-image variations. We now define
all 23 functionals used for steganalysis.

We will represent the luminance of a stego JPEG file
with a DCT coefficient array dj(k), i,j=1,....8,
k=1,...,np, where dy(k) denotes the (7,j)-th quantlsed
DCT coefficient in the k th block (there are a total of np
blocks).

The first vector functional is the histogram H of all
64 x np luminance DCT coefficients

H=(H,,.. Hg) (2)

where L =min,;d;(k), R=max;;d;(k).
The next five vector functionals are histograms

h? = (hZ7 vh%)a (i,j) € {(172)7 (2’ 1)7 (3’ 1)7(2’2)’(173)}
3)

of DCT coefficients of the five lowest frequency AC
modes (i,/))eL2{(1,2),(2,1),(3,1),(2,2),(1,3)}.

The next 11 functionals are 8 x 8 matrices
gdi,j=1,...,8, called ‘dual’ histograms

np

gl = 5(d,dy(k),
k=1

where d(x,y)=1 if x=y and 0 otherwise.

The next six functionals capture inter-block
dependency among DCT coefficients. The first scalar
functional is the variation V'

d=—5,...,5 (4)

dyj(L(k +1))]

S=1E() = F(L), (1)

The cropping and recompression produce a ‘cali-
brated” JPEG image with most macroscopic features
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(5)
where I, and I, stand for the vectors of block indices
1,...,ngp while scanning the image by rows and by

columns, respectively.
The next two blockiness functionals are scalars
calculated from the decompressed JPEG image
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representing an integral measure of inter-block
dependency over the whole image

[(M-1)/8] =N L(N-1)/8] =M
Z[:l Zj:l ‘cgir/—cg"*]=f|x+z/‘:1 Z[:l leigi—eigjsi [

B, = NL(T—T)/8 [T ML(N-T)/8] (6)

In (6), M and N are image height and width in pixels and
¢;; are greyscale values of the decompressed JPEG
image.

The remaining three functionals are calculated from
the co-occurrence matrix of DCT coefficients from
neighbouring blocks

Noo = Coo(J1) — Coo(/2)

SVMs classifying into two stego classes, the final values
of the parameters were determined by the smallest
estimated classification error. For SVMs classifying
between the cover and stego classes, the parameters
were determined by the smallest estimated missed
detection rate under the condition that the estimated
false positive rate is below 1%. If none of the estimated
false positive rates was below 1%, the parameters were
determined by the smallest estimated false positive rate.
The multiplicative grids for each SVM are described in
the corresponding sections.

Prior to training, all elements of the feature vector
were scaled to the interval [—1,+1]. The scaling

Noi = Co1(J1) — Co1(J2) + Cip(J1) — Cro(J2) + Coio(J1) — C10(J2) + Co—1(J1) — Co—1(J2)
Ny =Cii(J1) = Cii(2) +Ci1(J1) = Ci—1(S2) + Coy 1 (1) = Coi 1 (J2) + Coy 21 () — Ci 1 (J2) (7)

where

Cst =

S S o (s, (1 ()8 (1, dy(L,(k + 1)) + X5y Sl (s, dy(Le(K))) 0 (1, di(Le (ke + 1))

The argument J; or J; in (7) denotes the image to which
the coefficient array d;(k) corresponds.

3 Classifier construction

In our work, we used soft-margin SVMs [8, 24] with
Gaussian kernel exp(—7y|x—y||?). Soft-margin SVMs can
be trained on non-separable data by penalising incor-
rectly classified images with a factor C - d, where d is the
distance from the separating hyperplane and C is a
constant. The role of the parameter C is to force the
number of incorrectly classified images during training
to be small. If incorrectly classified images from both
classes have the same cost, C is the same for both cover
and stego images. In steganography, however, false
positives (cover images classified as stego) have asso-
ciated a much higher cost than missed detection (stego
images classified as cover). This is because images
labelled as stego must be further analysed using brute-
force searches for the secret stego key. To train an SVM
with uneven cost of incorrect classification, we penalise
incorrectly classified images using two different penalty
parameters Cgp and Cgy, where the subscripts FP and
FN stand for false positives and false negatives,
respectively.

The parameters must be determined prior to training
an SVM. For binary SVMs that classify between two
classes of stego images, e.g. between F5 and OutGuess,
we assign equal cost to both classes. Thus, we only need
to determine two parameters — (y,C). For SVMs that
classify between cover and stego images, we need to
determine three parameters (y,Cgp,Cgn). Following the
advice in [25], we calculated the parameters through a
search on a multiplicative grid with n.,-fold cross-
validation. After dividing the training set into n,,
distinct subsets (e.g. n.,=5), n.,— 1 of them were used
for training and the remaining 7n.,-th subset was used to
calculate the validation error, false positive and missed
detection rates. This process was repeated 7., times for
each subset and the results were averaged to obtain the
final parameter values. The averages are essentially
estimates of the performance on unknown data. For
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(8)

coefficients were always derived from the training set.
For the n.,-fold cross-validation, the scaling coefficients
were calculated from the n.,—1 subsets.

There exist several extensions of SVMs to enable them
to handle more than two classes. The approaches can be
roughly divided into two groups—-‘all-together’ methods
and methods based on binary (two-class) classifiers. A
good survey with comparisons is the paper by Hsu and
Lin [26], where the authors conclude that methods based
on binary classifiers are typically better for practical
applications. We tested the ‘max-wins’ and directed
acyclic graph SVMs [27]. Since both approaches had
very similar performance in our tests, we decided to use
the ‘max-wins’ classifier in all our tests. This method
employs (5) binary classifiers for every pair of classes (n
is the number of classes into which we wish to classify).
During classification, the feature vector is presented to
all (5) binary classifiers and the histogram of their
answers is created. The class corresponding to the
maximum value of the histogram is selected as the final
target class. If there are two or more classes with the
same number of votes, one of the classes is randomly
chosen.

3.1 Image database

Our image database contained approximately 6000
images of natural scenes taken under varying conditions
(outside and inside images, images taken with and
without flash and at various ambient temperatures) with
the following digital cameras: Nikon D100, Canon G2,
Olympus Camedia 765, Kodak DC 290, Canon Power-
Shot S40, images from Nikon D100 downsampled by
a factor of 2.9 and 3.76, Sigma SD9Y, Canon EOS
D30, Canon EOS D60, Canon PowerShot G3, Canon
PowerShot G5, Canon PowerShot Pro 90IS, Canon
PowerShot S100, Canon PowerShot S50, Nikon Cool-
Pix 5700, Nikon CoolPix 990, Nikon CoolPix SQ,
Nikon D10, Nikon D1X, Sony CyberShot DSC F505V,
Sony CyberShot DSC F707V, Sony CyberShot DSC
S75 and Sony CyberShot DSC S85. All images were
taken either in the raw raster format TIFF or in
proprietary manufacturer raw data formats, such as
NEF (Nikon) or CRW (Canon). The proprietary raw
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formats were converted to BMP using the software
provided by the manufacturer. The image resolution
ranged from 800 x 631 for the scaled images to 3008 x
2000. We have included scaled images into the database,
because images are usually resized when shared
via e-mail.

For experiments with single-compressed images (Sec-
tion 4), we divided all images into two disjoint groups.
The first group was used for training and consisted of
3500 images from the first 7 cameras in the list
(including the downsampled images). The second
group contained the remaining 2500 images and was
used for testing. Thus, no image or its different forms
were used simultaneously for testing and training. This
strict division of images also enabled us to estimate the
performance on never seen images from a completely
different source.

The database for the second experiment on double-
compressed images (Section 5) was a subset of the larger
database consisting of only 4500 images. This measure
was taken to decrease the total computational time.

4  Multi-classifier for single-compressed
images

In this section, we build a steganalyser that can
assign stego JPEG images to six known JPEG steg-
anographic programs. We also require this steg-
analyser to be able to handle single-compressed JPEG
images with a wide range of quality factors. Instead of
adding the JPEG quality factor as an additional
24th feature, we opted for training a separate multi-
classifier for each quality factor. This classifier bank
performed better than one classifier with an additional
feature. Also, the training can be done faster this
way, because the complexity of training SVMs is
O(n ), where nyy, is the number of training images. In
order to cover a wide range of quality factors with
feasible computational and storage requirements, we
selected the following grid of 17 quality factors Q;;=
{63,67,69,71,73,75,77,78,80,82,83,85,88,90,92,94,96} .

We prepared the stego images by embedding a
random bit-stream of different relative lengths using
the following six algorithms—F5 [16], model-based
steganography without (MBI1) and with deblocking
(MB2) [18, 22, 23], JP Hide&Seck [21], OutGuess ver.
0.2 [17], and Steghide [20]. For F5, MBI, JP Hide&Seck,
OutGuess and Steghide, we embedded messages of three
different lengths—100, 50 and 25% of the maximal
image embedding capacity. By maximal embedding
capacity, we understand the length of the largest message
that is possible to embed in a particular image by a
particular program. In compliance with the directions
provided by its author, for JP Hide&Seek we assumed
that the embedding capacity of the image is equal to
10% of the image file size. For MB2, we only embedded
messages of one length equivalent to 30% of the
embedding capacity of MBI to minimise the cases
when the deblocking algorithm fails.

F5 and OutGuess are the only two programs that
always decompress the cover image before embedding
and embed data during recompression. Both algorithms,
however, also accept raster lossless formats (‘png’ for F5
and ‘ppm’ for OutGuess), in which case the stego image
is not double compressed. We also note that OutGuess
had to be modified to allow saving the stego image at
quality factors lower than 75.
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4.1 Training

The max-wins multi-classifier trained for each quality
factor employs (3) = 21 binary classifiers for every pair
out of n=7 classes. For each classifier, the training set
consisted of 3400 cover and 3400 stego images. If, for a
given class, more than one message length was available
(all algorithms except MB2 and cover), the training
set had an equal number of stego images embedded
with message lengths corresponding to 100, 50 and 25%
of the algorithm embedding capacity. The total number
of images used for training of all 17 multi-classifiers
combined was thus approximately 17 x 17 x 3500 =
1011500 (there are 17 quality factors and 3 message
lengths for 5 stego programs, plus one for MB2 and
cover). For SVMs classifying into two stego classes, the
parameters (y,C) were determined by a grid-search on
the multiplicative grid

(1,C) e {(2,2)]ie {-5,...,3}, je{-2,...,9}}

9)
The parameters (y, Cgp, Cpn) for SVMs classifying
between the cover class and a stego class were
determined on the grid

(7, Crp, Cen) € {(2,10-2/,2/),(2/,100 - 2/, /)|
ic{-5...,3}, je{-2,...,9}} (10)

In both cases, 5-fold cross-validation was used to
estimate the performance. Due to the large number of
parameters for each classifier (17 x (6 x 2+ 15 x 2)), we
do not include them in this paper.

4.2 Testing and discussion

The testing database consisted of 2500 source images
never seen by the classifier and their embedded versions
prepared in the same manner as the training set. Out of
the 2500 images, 1000 were taken by cameras used for
producing the training set, while the remaining 1500 all
came from cameras not used for the training set. The
whole testing set for all quality factors contained
approximately 17 x 17 x 2500 =722 500 images.

In Table 1, we show, as an example, the confusion
matrix for the multi-classifier trained for the quality
factor 75 and tested on images of the same quality
factor. The multi-classifier reliably detects stego images
for message lengths 50% or larger. For fully embedded
images, the classification accuracy is 93-99% with false
negative rate of 0.44%. JP Hide&Seek and OutGuess
are consistently the ecasiest to detect for all message
lengths, while MB2 and MBI are the least detectable
methods. At low embedding rates, the detection of F5 is
also lower when compared with other methods, which is
likely due to matrix embedding that decreases the
number of embedding changes.

With decreasing message length, the results of the
classification naturally become progressively worse. At
this point, we would like to point out that there are
certain fundamental limitations that cannot be over-
come. In particular, it is not possible to distinguish
between two algorithms that employ the same embed-
ding mechanism by inspecting the statistics of DCT
coefficients. For example, two algorithms that use LSB
embedding along a pseudo-random path will be indis-
tinguishable in the feature space. This phenomenon
might be responsible for ‘merging’ of the MB1, MB2
and Steghide classes.
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Table 1: Confusion matrix for the multi-classifier trained for quality factor 75 tested on single-compressed 75-quality

JPEG images
Classified as

Embedding algorithm Cover (%) F5 (%) JP Hide&Seek (%) MB1 (%) MB2 (%) OutGuess (%) Steghide (%)
F5 100% 0.32 97.40 1.04 0.60 0.00 0.12 0.52
JP Hide&Seek 100% 0.00 0.52 98.32 0.56 0.00 0.12 0.48
MB1 100% 0.08 0.16 0.72 94.44 0.32 1.56 2.72
OutGuess 100% 0.00 0.04 0.52 0.08 0.04 99.08 0.24
Steghide 100% 0.04 0.04 1.68 2.96 0.24 1.52 93.53
F5 50% 0.96 91.65 0.92 4.12 0.28 0.76 1.32
JP Hide&Seek 50% 0.32 0.88 90.46 5.23 0.04 0.40 2.68
MB1 50% 0.80 0.52 0.16 87.57 2.20 1.92 6.83
OutGuess 50% 0.08 0.16 0.20 0.48 0.08 98.64 0.36
Steghide 50% 0.28 0.44 0.16 3.99 3.47 2.84 88.82
MB2 30% 6.75 0.40 0.36 1.76 88.46 0.56 1.72
F5 25% 10.99 63.60 1.04 16.98 2.56 0.68 4.16
JP Hide&Seek 25% 6.15 1.28 74.96 12.74 0.92 0.24 3.71
MB1 25% 11.02 1.68 0.56 69.17 6.63 1.12 9.82
OutGuess 25% 1.32 0.76 0.24 2.80 3.23 89.14 2.562
Steghide 25% 7.07 1.36 0.24 12.42 11.14 1.96 65.81
Cover 96.45 0.12 0.20 1.44 0.40 0.08 1.32

The first column contains the embedding algorithm and the relative message length. The remaining columns show the results of classification.

To present the results for all quality factors in a
concise and compact manner, in Fig. 2 we show the false
positives and the detection accuracy for each stegano-
graphic algorithm separately. For each graph, on the x
axis is the quality factor ¢ € Q;; and each curve
corresponds to one relative message length. The detec-
tion accuracy is the percentage of stego images
embedded with a given algorithm that are correctly
classified as embedded by that algorithm. The false
positive rate is the percentage of cover images classified
as stego and is also shown in each graph (it is the same
in each graph).

The false positive rate and detection accuracy for
fully embedded images vary only little across the
whole range of quality factors. For less than fully
embedded images, the classification accuracy decreases
with increasing quality factor. The situation becomes
progressively worse with shorter relative message
lengths. This phenomenon can be attributed to the
fact that with higher-quality factor the quantisation
steps become smaller and thus the embedding
changes are more subtle and do not impact the features
as much.

Next, we examined the images that were misclassified.
In particular, we inspected all misclassified cover images
and all stego images containing a message larger than
50% of the image capacity. We noticed that some of
these images were very noisy (images taken at night
using a 30 s exposure), while others did not give us any
visual clues as to why they were misclassified. We note,
though, that the embedding capacity of these images
was usually below the average embedding capacity of
images of the same size.

As the calibration used in calculating the DCT
features subjects an image to compression twice, the
calibrated image has a lower noise content than the
original JPEG image. Thus, we hypothesise that very
noisy images are more likely to be misclassified. To test
this hypothesis, we blurred the noisy cover images that
were classified as stego using a blurring filter with
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Gaussian kernel with diameter 1 and reclassified them.
After this slight blurring, all of them were properly
classified as cover images.

Most of the misclassified images from the remaining
cameras were ‘flat” images, such as blue sky shots or
completely dark images taken with a covered lens. Flat
images do not provide sufficient statistics for stegana-
lysis. Because these images have a very low capacity (in
tens of bytes) for most stego schemes, they are not
suitable for steganography anyway.

Since we only trained the classifiers on a selected
subset of 17 quality factors, a natural question to ask is
if this set is ‘dense enough’ to allow reliable detection for
JPEG images with a// quality factors in the range 63-96.
To address this issue, we compared the performance of
several pairs of classifiers trained for two different but
close quality factors (e.g. ¢ and ¢+ 1) on images with a
single quality factor ¢. For example, we used one
classifier trained for quality factor 66 and the other
trained for 67 and compared their performance on
images with quality factor 67.

Generally, the increase in false positives between both
classifiers was about 0.3%. The exception was the
classifier trained for the quality factor 77, where the false
positive rate was by 1.5% higher on cover JPEG images
with quality factor 78 in comparison with the classifier
trained for quality factor 78. We point out that the
quantisation tables for these two quality factors differ in
three out of five lowest frequency AC-coefficients. This
indicates that for best results, a dedicated multi-classifier
needs to be built for each quality factor. This is
especially true for those quality factors around which
the quantisation matrices go through rapid changes.

Finally, an interesting and important question is what
does the classifier do when presented with a stego
algorithm that it was not trained on. Referring to our
previous work [19, Table 5 in Section 4.4], we trained the
same multi-classifier for single-compressed images
embedded with only F5, OutGuess, MB1 and MB2,
and then presented the classifier with images embedded
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Fig. 2 Percentage of correctly classified images embedded with a given stego algorithm and false positives (percentage of cover images

detected as stego) for all 17 multi-classifiers
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Each figure corresponds to one stego algorithm and each curve to one relative payload

with JP Hide&Seck. It correctly recognised the images
as stego images (only 1.5% were classified as cover
images) and assigned most of the images (62.5%) to F5
and 29.6% to MBI. In general, it is difficult to predict
the result of the classification because it depends on how
the SVM partitions the feature space.

5 Multi-classifier for double-compressed
images

In this section, we construct a steganalyser that can
classify double-compressed JPEG images into three
classes — F5, OutGuess and cover, because F5 and
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OutGuess are the only stego programs in our set capable
of producing double-compressed images. We con-
strained ourselves to just one secondary quality factor
of 75 (the default factor for OutGuess). The classifier
has an additional module that first estimates the primary
quality factor from a given stego image. This estimated
quality factor is then appended as an additional feature
to the feature vector. We decided to create one large
classifier for all primary quality factors instead of a set
of specialised classifiers for each combination of
primary/secondary quality factor, as we did in the
single-compression classifier case. We opted for this
solution, because one big multi-classifier can better deal
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with inaccuracies in the detection of the primary quality
factor. The results reported here are the first attempt to
address the issue of double compression, which has been
largely avoided in the research literature due to its
difficulty.

5.1 DCT features for double-compressed images
As explained in [28], the process of calibration must be
modified for images that went through multiple JPEG
compression. In this section, we explain the modified
calibration process.

Double compression occurs when a JPEG image,
originally compressed with a primary quantlsatlon
matrix QP", is decompressed and compressed again
with a different secondary quantisation matrix Q*°. For
example, both F5 and OutGuess always decompress
the cover JPEG image to the spatial domain and then
embed the secret message while recompressing the
image with a user-specified quality factor. If the second
factor is different than the first one, the stego image
experiences what we call double JPEG compression.

The purpose of calibration when calculating the DCT
features is the estimation of the cover image. When
calibrating a double-compressed image, the calibration
must mimic what happens during embedding. In other
words, the decompressed stego image after cropping
should be first compressed with the primary (cover)
quantisation matrix QP", decompressed and finally
compressed again with the secondary quantisation
matrix Q*°. Because the primary quantisation matrix
is not stored in the stego JPEG image, it has to be
estimated. Without incorporating this step, the results of
steganalysis that uses DCT features might be completely
misleading [6].

In our work, we use the algorithm [29] for estimation
of the primary quantisation matrix. It employs a set of
neural networks that estimate from the histogram of
individual DCT modes the quantisation steps Q" for
the five lowest frequency AC coefficients (i,)) e L =
{(2,1),(1,2),(3,1),(2,2),(1,3)}. Constraining to the lowest
frequency steps is necessary because the estimates of the
higher-frequency quantisation steps become progres-
sively less reliable due to insufficient statistics for these
coefficients. From the five lowest-frequency quantisa-
tion steps, we determine the whole primary quantisation
matrix QP as the closest standard quantisation table
using the following empirically constructed algorithm.

(1) Apply the estimator [29] to the stego image and
find the estimates Ur ,(i,)) € L.

(2) Find all standard quantisation tables Q for which
Q)= Qprl for at least one (i) € L.

3 A551gn a matching score to all quantlsatlon tables
Q found in Step 2. Each quantisation table receives two
points for each quantisation step (ij) € £ for which
Q= Q? and one point for the quantisation step that is
a multiple of 2 or 1/2 of the detected step.

(4) The quantisation table with the highest score is
returned as the estimated primary quantisation table.

Note, that for certain combinations of the primary
and secondary quantisation steps it is in principle very
hard to determine the primary step (e.g. deciding whe-
ther Qprl =1or Qprl = Q). In such cases, the estimator
returns Qprl =0y 'and the image is detected as single
compressed Fortunately, in these cases, the impact
of incorrect estimation of the primary quantisation
table is not significant for steganalysis because the
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Fig. 3 Calibrated features for double-compressed JPEG
images

double-compressed image does not exhibit strong
traces of double compression anyway. The modified
calibration process that incorporates the estimated
primary quantisation matrix is described in Fig. 3.

5.2 Training

The training database of stego images was constrained
to images embedded with three relative message lengths
using F5 and OutGuess. The secondary (stego) quality
factor was fixed to 75, since this is the default quality
factor for OutGuess. To decrease the computational and
storage requirements, we used a smaller image database
and trained the classifier again on a preselected subset of
quality factors. The training set was prepared from 3400
raw images and the testing set from additional 1050
images. The training set contained JPEG images with
primary quality factors in the range from 63 to 100. The
primary quality factors used for training were selected
so that for every quality factor ¢ € {63,...,100}, there is
a quality factor ¢', such that for the corresponding qua-
ntisation matrices > . [Q; — Q| < 2. This leads to
the following set of 12 primary quality factors Q;, =
{63,66,69,73,77,78,82,85,88,90,94,98}. Each raw image
was JPEG compressed with the appropriate primary
quality factor before embedding and then a random bit-
stream of relative length 100, 50 and 25% of the image
embedding capacity was embedded using F5 and Out-
Guess with the stego quality factor set to 75. The cover
images were also JPEG compressed with the secondary
quality factor 75.

To summarise, for training each raw image was
processed in seven different ways (OutGuess 100%,
OutGuess 50%, OutGuess 25%, F5 100%, F5 50%, F5
25% and cover JPEG) and for 12 different primary
quality factors selected from Q;,. The total number of
images used for training was 12 x 7 x 3400 = 285 600.
Table 2 shows the distribution of images in the training
set for one primary quality factor and all three binary
SVMs (cover vs. F5, cover vs. OutGuess, and F5 vs.
OutGuess). The training set for each machine consisted
of approximately 12 x 3400 =40 800 cover and the same
amount of stego images. The stego images were
randomly chosen to uniformly cover all message lengths
for each algorithm.
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Table 2: Structure of the set of training images for one primary quality factor for training the three binary SVMs for

double-compression multi-classifier

Classifier Cover F5 OutGuess

0% 100% / 50% / 25% 100% / 50% / 25%
Cover vs. F5 3400 1133 / 1133 / 1133 —
Cover vs OutGuess 3400 — 1133 / 1133 / 1133

F5 vs. OutGuess —

1133 / 1133 / 1133 1133 / 1133 / 1133

We have created one multi-classifier for all primary quality factors in Q,5, thus the whole training set contained images double-compressed with

primary quality factors in @, and the secondary quality factor 75.

Table 3: Confusion matrix showing the classification
accuracy of the multi-classifier for double-compressed
images (results are merged over all primary quality
factors)

Table 4: Classification accuracy on a test set of double-
compressed images with 20 different primary quality
factors from Q,,, 8 of which were not used for training
(compare with Table 3)

Classified as

Algorithm Cover (%) F5 (%) OutGuess (%)
F5 100% 0.56 99.26 0.18
OutGuess 100% 0.52 0.11 99.36
F5 50% 0.87 98.87 0.25
OutGuess 50% 0.80 0.28 98.93
F5 25% 8.30 90.86 0.84
OutGuess 25% 5.23 1.30 93.47
Cover 96.99 1.99 1.02

The primary quality factors of all test images are the same as those used
for training. For each primary quality factor, algorithm and message
length, there are approximately 1050 images

The parameters y and C were determined by a grid-
search on the multiplicative grid

(r,C) e {(2",2)|ie{-5,...,3},j€{0,...,10} }

combined with 5-fold cross-validation, as described in
Section 3. In particular, we used y = 4, C = 128 for the
cover vs. F5 SVM, y = 4, C = 64 for the cover vs.
OutGuess SVM and y = 4, C = 32 for the F5 vs.
OutGuess machine. For all three classifiers, the best
validation error on the grid was achieved for a fairly
narrow kernel, which suggests that the separation
boundaries between different classes are rather thin.

5.3 Testing and discussion

Table 3 shows the confusion matrix calculated for
images from the testing set that was prepared in exactly
the same manner as the training set from additional
1050 images never seen by the classifier (i.e. the number
of test images was 12 x 7 x 1050 = 88 200). In Fig. 4, we
depict the results for each quality factor separately and
for each steganographic algorithm. The figure shows the
percentage of correctly classified stego images and the
percentage of cover images classified as stego (false
positives) as a function of the quality factor. We see that
when the message is longer than 50% of the embedding
capacity, the classification accuracy is very good. The
classification accuracy for short message lengths (25%
of embedding capacity) is above 90%. The false alarm
rate is about 3%.

While the false positive rate stays approximately the
same for all primary quality factors, the missed
detection rate for images with short messages varies
much more. For example, for F5 stego images with
message length 25%, the highest missed detection rate is
15.36% for the primary quality factor 90, while for the
primary quality factor 69 the rate is only 2.77%. A
similar pattern was observed for OutGuess. In general,
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Algorithm Cover (%) F5 (%) OutGuess (%)
F5 100% 8.1 91.24 0.66
OutGuess 100% 0.76 0.21 99.01
F5 50% 9.21 90.00 0.79
OutGuess 50% 1.78 0.52 97.70
F5 25% 14.92 82.89 1.19
OutGuess 25% 13.96 1.99 84.05
Cover 94.34 3.33 2.33

the missed detection rate is better for images with lower
primary quality factors.

To obtain further insight into this phenomenon, we
examined the accuracy of the estimator of the primary
quality factor. As one can expect, the embedding
changes themselves worsen the estimates of the primary
quantisation table. This effect is more pronounced for
images with primary quality factor above 88, which are
often detected as single-compressed images. Therefore,
further improvement is expected with more accurate
estimators of the primary quality factor. In particular,
the estimator should be trained not only on double-
compressed cover images, but also on examples of
double-compressed stego images.

Similar to Section 4, we next decided to test the
performance of the classifier for double-compressed
images on images with primary quality factors that
were not among those that the classifier was
trained on. We added to the testing database double-
compressed and embedded images with 8 more
quality factors, obtaining the following expanded
set of 8+4+12=20 primary quality factors Q,y=
{63,67,69,70,71,73,75,77,78,80,82,83,85,87,88,90,92,94,
96,98}. Table 4 shows the confusion table. Although
the false alarm percentage increased by about 1% for
each class, the misclassification among different classes
increased by almost 10%. This indicates that reliable
classification for double-compressed images requires
training on a denser set of quality factors.

6 Conclusions

In this paper, we construct a classifier bank capable of
assigning JPEG images to six known JPEG stegano-
graphic algorithms. We also address the difficult issue of
double-compressed images by building a separate
classifier for images that were recompressed during
embedding with a different quantisation matrix. Because
the classifiers described in this paper can identify the
embedding algorithm, they form an important first step
in forensic steganalysis whose goal is to not only detect
the secret message presence but also to eventually
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Abbreviations are explained in the text

extract the message itself. As such, this tool is expected
to be useful for law enforcement and forensic examiners.

The classifiers are built from 23 features calculated
from the luminance component of DCT coefficients
using the process of calibration. The first classifier bank
is designed for single-compressed images. For each
quality factor, a set of (g) binary SVMs is constructed
that can distinguish between pairs from n=7 classes
(6 stego programs -+ cover images). Each classifier is
built from cover and the same number of stego images
embedded with messages of relative length 25, 50 and
100% of the embedding capacity. The max-wins multi-
classifier is then used to evaluate the individual decisions
of 21 binary classifiers to assign an image to a specific
class. The performance is evaluated using confusion
matrices and graphs that show the classification
accuracy for each algorithm as a function of the quality
factor for separate message lengths.

The second classifier is designed to assign double-
compressed images to three classes—images embedded
with F5, OutGuess and non-embedded cover images.
We classify into these classes because F5 and OutGuess
are the only stego programs that can produce double-
compressed images during embedding (when the cover
image quality factor is not the same as the stego image
quality factor). Double compression must be corrected
for in the calibration process. This requires estimation
of the primary (cover) quality factor. We trained a
classifier for test images of 12 different quality factors.
This classifier gave satisfactory performance on a testing
set of double-compressed stego images with the same 12
quality factors produced by F5 and OutGuess. It also
performed reasonably well when tested on JPEG images
with quality factors that were not included in the
training set. More accurate results are expected after
expanding the training set of quality factors.
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As already stated in the introduction, the goal of
this paper is to build a solid foundation for construc-
ting a multi-class steganalyser capable of assigning
images to known steganographic programs and able
to handle images of arbitrary quality factor and both
single and double-compressed images. Our plan for
the future is to further refine both classifier banks
constructed in this paper and merge them into one
complex steganalyser. This steganalyser will be preceded
by an SVM estimator of the primary (cover image)
quantisation matrix. This estimator first makes a
decision if the image under investigation is a single-
compressed image or a double-compressed image and
then sends it, together with an estimate of the primary
quantisation matrix, to the appropriate -classifier
(see Fig. 5).

The estimator of double compression will have a
significant impact on the overall accuracy of the
classification because once an image is deemed double
compressed, it can only be a cover image or embedded
using F5 or OutGuess. Thus, this estimator should be
tuned to have a very low false positive rate (incorrectly
detecting double compression when the image is
single compressed). As pointed out in Section 5, we
currently use a neural-network based estimator from
[29] trained on double-compressed images. However,
the steganalyser might be presented with images
that were jointly double compressed and embedded.
The act of embedding might change the distribution
of DCT coefficients and thus might confuse the double-
compression estimator. Obviously, it is necessary to
train the estimator on both double-compressed images
and double-compressed and embedded images. Since
this topic deserves a paper of its own, we plan to first
carefully design the estimator and then incorporate it
into steganalysis as discussed above.
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