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ABSTRACT

By selecting covers in which steganographic embedding is harder to

detect, the steganographer can decrease the chances of being caught

by the Warden. On the other hand, sampling from the cover source

with a bias is detectable on its own. In this paper, we study this

trade-off theoretically within a simple source model. Our analysis

predicts the existence of łbias security gainž when the sender selects

the sampling bias optimally. Sampling with a bias initially morphs

the ROC of Warden’s detector to be asymmetrical, lowering the

true positive rate for small false alarm rates. We provide a theorem,

analogous to the square root law, for the joint critical rates of

sampling bias and payload that achieve asymptotically constant

detectability. Our analysis is verified experimentally.
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1 INTRODUCTION

In the classical setup of steganography, there exists a source of

cover objects from which Alice and Bob draw to communicate

covertly. The Warden tests whether the objects they exchange

follow a known distribution [6]. As is the case in most work on

digital media steganography by cover modification, Alice’s stego

method is assumed to be imperfectly secure as she is unable to

exactly preserve the cover distribution due to the sheer complexity

of natural images and the diversity of development from RAW

capture and subsequent post processing [2]. Thus, in practice Alice

settles for disturbing the cover source model as little as possible to

comply with some detectability or payload requirement.
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The majority of research in this field has focused on the stegano-

graphic scheme and the allocation of payload across images [13,

14, 16, 19, 22]. One seemingly simple measure for Alice to improve

security is to draw covers from her source with a bias and prefer

selecting complex or noisy images in which the embedding changes

are harder to detect. This should indeed improve the security with

respect to stego detectors. On the other hand, sampling from the

cover source with a bias will change the distribution as well and

Alice will become vulnerable to a source detector. With this in mind,

it is natural to ask if there is an optimal bias, neither too big nor

too small, that best avoids being caught by either detector.

Most prior art in cover selection for steganography deals with

the problem of selecting a subset of images from a given dataset

to create a new cover source that is harder to steganalyze [18, 20ś

23, 25, 26]. Such work ignores the fact that sending only stego-

friendly images is suspicious on its own. As argued in the next

section, a cover selection algorithm should be considered a part of

the embedding scheme, which would allow the Warden to detect

whether Alice selects covers from her source with a bias. In [21],

the authors consider the impact of cover selection on the source

by enforcing the maximum mean discrepancy [11] between the

selected subset of covers and a randomly selected subset to be

łtypical.ž This work is experimental and heuristic in nature, and it

is not clear how far one can bias to enjoy a security benefit, how

big this benefit is, and what form it has.

The novelty of our work is that we approach cover selection from

a theoretical point of view within a source model. The Warden’s

hypothesis test considers the effect of embedding and source bias-

ing jointly within the context of batch steganography and pooled

steganalysis [14]. The most closely related prior art is [10], where

the authors study how Alice should choose her cover from multiple

sources within a game theoretic setup when the Warden makes a

decision based on a single image.

After motivating our approach in the next section, Section 3

introduces the key concepts, including the detector response curve,

sender’s embedding strategy and biasing, and the modeling as-

sumptions that facilitate our theoretical analysis. In Section 4, we

formulate Warden’s hypothesis test as a joint detection of stegano-

graphy and source biasing and derive a closed-form expression for

the receiver operating characteristic (ROC) of Warden’s optimal

detector. This allows us to obtain the main results, which include

morphing of Warden’s ROC with increased bias, the sender’s bias

gain, and an asymptotic result when an infinite number of images

are communicated. To validate our analysis, we report on experi-

ments with digital images and deep learning detectors in Section 5;

the results confirm the existence of the bias gain, the theoretically

predicted behavior of the Warden’s detector, and its dependence
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on the parameters of the steganographic channel. The paper is

concluded in Section 6.

2 MOTIVATION

To motivate the setup within which we carry out our analysis and

experiments, in this section we discuss the concept of cover biasing

and its detection. While in this paper we work with covers in the

form of digital images represented in the spatial domain, we expect

the methodology and our conclusions to apply to JPEG images and

also for steganography in other digital media.

Intuitively, creating a slight preference for stego-friendly im-

ages might go a long way in improving security without raising

suspicion. Depending on how Alice selects her covers, one could

argue that detecting a bias in sampling from the cover source is not

even possible or at least not possible to do accurately. For example,

when Alice uses her images as covers, the type of images taken can

vary greatly depending on numerous unpredictable circumstances

not related to steganography, such as travel, world events, changes

in photographic equipment and editing software, her own evolu-

tion as a photographer, etc. Moreover, modeling sources is difficult

given the typical dimensionality of images, the wide spectrum of

development pipeline parameters and post-processing options, and

the number of images required for estimating such models.

Additionally, we need to ask whether observing a source of im-

ages that is more friendly to steganography is a sufficient argument

for steganography actually being used. The answer depends on

the degree to which Kerckhoffs’ principle is employed, i.e., what

kind of information is available to the Warden. In Natural Stega-

nography (NS) [1], for example, Alice uses her knowledge of the

development pipeline to embed into low ISO images, making stego

images look like covers taken at higher ISO. Although NS does not

involve cover selection, the Warden would tend to see higher ISO

images communicated by Alice; but is this suspicious on its own?

The security of NS comes from the Warden not knowing the true

ISO distribution of Alice’s cameraÐa higher ISO distribution would

not be justifiably suspicious. However, if theWarden knew that, e.g.,

Alice uses automatic exposure settings, the true ISO distribution

would be known and NS would be highly detectable. Note that this

evidence of stego-friendly images or change in source is indirect as

it is often not specific to any given embedding method. However,

in steganalysis there are many examples of detectors that rely on

such types of evidence, such as compatibility attacks. In the JPEG

compatibility attack [9], a block of pixels that could not have arisen

from any block of quantized DCTs by decompression is taken as

evidence of steganography even though the incompatibility could

be due to other kinds of manipulations, such as image retouching,

removing dust specks, recoloring one’s eyes, etc.

Ultimately, we consider a change in how the cover source is

sampled to be a part of the embedding algorithm. Thus, we grant

theWarden knowledge of the cover source so that testing for biased

sampling is possible,1 in accordance with the information theoretic

definition of steganographic security [6]. In fact, not giving the

Warden any information about Alice’s original cover source leads

to a degenerate situation because quite significant portions of popu-

lar image datasets, such as ALASKA II [7], contain images in which

1And we assume a source change is due to steganography.

steganography is virtually undetectable using state-of-the-art de-

tectors, such as images taken with very high ISO setting.

Regarding the source modeling and its biasing, one could con-

sider models in some steganalysis feature space as was the approach

taken in [21]. However, high-dimensional models are difficult to

use for an analytic study, which is our main goal. Instead, we model

the source through soft (scalar) outputs of a steganography detec-

tor as in [8]. While this makes the model dependent on a given

steganographic method and detector, as will be seen below this

approach facilitates tractable analysis with interpretable closed-

form solutions that provide insight into the trade-off between the

gain of biased sampling and the added vulnerability to a source

detector. It also intuitively makes sense for Alice to prefer selecting

covers for which the embedding does not affect the soft output of

the detector. In the extreme case when she only embeds images

that do not respond to embedding, a warden equipped with the

same detector would not be able to detect steganography. Finally

and most importantly, using a steganography detector for detecting

both the use of steganography and a change in sampling covers

allows us to consider the problem of detecting steganography and

source jointly through a single hypothesis formulation instead of

having to consider a stego detector and a separate source detector

and then deal with the difficult problem of fusing their outputs.

3 MODELING FRAMEWORK

In this section, we lay out the basic assumptions and statistical mod-

els that will facilitate our analysis of the effect of source biasing on

security. We assume the Warden has a single-image steganography

detector (SID), which is a mapping 𝑑 : X → R that assigns to

each image a scalar referred to as the soft output (or response) of

the detector. To motivate and justify our models, we will assume

that sampling from X is a two-stage process. First, Alice selects a

łscenež and then acquires it with an imaging sensor. Conceivably,

she could take as many acquisitions of the same scene as she wishes.

These acquisitions will slightly differ due to, e.g., photonic noise

and electronic noise, and will be concentrated around a noise-free

version of the scene. We call this distribution conditioned on the

scene the acquisition oracle. To avoid the complexity of modeling

the oracle, we model the soft outputs of Warden’s detector as in [8].

3.1 Modeling soft output of Warden’s detector

Suppose that Alice has 𝑛 cover images 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛, which are

independent samples from 𝑛 acquisition oracles. Denoting a Gauss-

ian random variable with mean 𝜇 and variance 𝜎2 as N(𝜇, 𝜎2), we
assume that

𝑑 (𝑋𝑖 ) ∼ N (𝜇𝑖 , 𝜎2𝑖 ), (1)

where 𝜇𝑖 and 𝜎
2
𝑖 are the expected value and variance of 𝑑 on cover

images 𝑋𝑖 generated by the acquisition oracle for the 𝑖th scene.

Since the acquisitions are concentrated on a small subset of X
and since differentiable non-linear functions2 are approximately

linear on sufficiently small neighborhoods, the Gaussianity can be

heuristically justified by the central limit theorem at least for the

case of RAW captures where the acquisition noise is independent

across pixels. See [24] and [8] for further discussion.

2Modern SIDs are often neural networks with differentiable structure.
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Since stego schemes strive to preserve statistical properties of

𝑋𝑖 , the embedding process will also preserve the concentration.

Therefore, by the same argument we assume that the detector

output on the stego image embedded with relative payload 𝛼𝑖 bits

per pixel (bpp), 𝑑 (𝑋𝑖 (𝛼𝑖 )), is also Gaussian3

𝑑 (𝑋𝑖 (𝛼𝑖 )) ∼ N (𝜇𝑖 + 𝑠𝑖 (𝛼𝑖 ), 𝜎2𝑖 ) . (2)

Note that we assume only the mean is affected by embedding

but not the variance. This local shift hypothesis is a much weaker

assumption than the shift hypothesis [19] about the global dis-

tribution of detector response which is not satisfied for modern

steganalyzers built with machine learning (see Sec. 3.2 in [24]).

3.2 Detector response curve

For a ternary embedding algorithm and cover acquisition 𝑋𝑖 with

maximal embedding capacity 𝐶𝑖 ≤ log2 3, the response curve (RC)

of detector 𝑑 is the function 𝜚𝑖 : [0,𝐶𝑖 ] → R defined by

𝜚𝑖 (𝛼) = E[𝑑 (𝑋𝑖 (𝛼)) |𝑋𝑖 ] . (3)

with 𝛼 ∈ [0,𝐶𝑖 ]. In other words, 𝜚𝑖 (𝛼) is the expected value of the

response 𝑑 (𝑋𝑖 ) when embedding 𝑋𝑖 with random messages and

stego keys for a given 𝛼 and a fixed cover 𝑋𝑖 .

Since the detector is trained to be sensitive to embedding changes

but not acquisition noise, we assume the expected increase in de-

tector response is uniform across all possible acquisitions 𝑋𝑖 of the

𝑖th acquisition oracle

𝜚𝑖 (𝛼) − 𝜚𝑖 (0) = 𝑠𝑖 (𝛼) . (4)

This assumption allows us to compute the expected shift 𝑠𝑖 (𝛼)
from a specific cover image, which simplifies analysis and practical

implementations.

3.3 Source model and biasing

As explained above, our source model will be defined through a de-

tector’s response curves. First, we adopt the simplifying assumption

that response curves are linear

𝜚𝑖 (𝛼) − 𝜚𝑖 (0) = 𝑏𝑖𝛼, (5)

where 𝑏𝑖 ∈ [0,∞) is the slope of the linear response curve. Even
though the response curves of typical detectors built with machine

learning are not linear, they are approximately linear when 𝜚𝑖 (𝛼) −
𝜚𝑖 (0) is small (see, e.g., Figure 3 in [24]).

Within the class of linear RCs (5), our source model boils down

to modeling the slopes. In particular, we assume that the slopes 𝑏𝑖
follow a two-valued distribution controlled by parameter 𝑝 ∈ (0, 1):

𝑏𝑖 ∼ B(𝑝) =
{
𝜀 with probability 𝑝

1 with probability 1 − 𝑝 .
(6)

We assume that the cover source contains only two types of

images ś those with smooth content where steganography is easily

detectable (slope 𝑏𝑖 = 1) and images with complex textures or noisy

images with 𝑏𝑖 = 𝜀 ≪ 1. While this may appear as a rather drastic

simplification, it allows us to analyze steganography with source

biasing via closed-form expressions, make specific predictions on

the impact of biasing, and verify these findings in practice.

3The random variable 𝑋𝑖 (𝛼𝑖 ) is generated by sampling 𝑋𝑖 from the oracle and em-
bedding a random message with a random stego key.

In the context of our source model (6), source biasing simply

involves sampling images so that the distribution of slopes follows

the biased distribution 𝑏𝑖 ∼ B(𝑞) given the biasing parameter

𝑞 ∈ (0, 1). Clearly, Alice should choose 𝑞 ≥ 𝑝 so that she is more

likely to embed difficult-to-steganalyze images.

3.4 Alice’s embedding strategy

The proper framework for analyzing the effect of source biasing is

the paradigm of batch steganography and pooled steganalysis [14].

Indeed, it is not possible to detect changes in cover source sampling

based on a single image. The Warden needs to analyze multiple

images. Alice, on the contrary is free to spread her payload across

multiple images as well.

Suppose that Alice samples a bag (or collection) of 𝑛 images

𝑋1, . . . , 𝑋𝑛 with response curve slopes 𝑏1, . . . , 𝑏𝑛 , respectively. Al-

ice wants to communicate some rate 𝑟 (𝑛) measured in bpp. For

simplicity, assume all images have relative embedding capacity

𝐶𝑖 = log2 3 bpp. Alice embeds 𝛼𝑖 bpp to each image 𝑋𝑖 subject to

her payload constraint
∑𝑛
𝑖=1 𝛼𝑖 = 𝑟 (𝑛) · 𝑛 and 𝛼𝑖 ∈ [0, log2 3], ∀𝑖 .

Let 𝐾 = |{𝑖 : 𝑏𝑖 = 𝜀}| be the number of images whose RC slopes

are 𝜀, i.e., 𝐾 ∼ Binom(𝑞, 𝑛) is a binomial random variable due to the

source model (6). For our theoretical analysis in the next section,

we consider a bivalued spreading strategy that assigns 𝛼𝑖 = 𝛼𝜀
to all images with 𝑏𝑖 = 𝜀 and 𝛼𝑖 = 𝛼1 to images with 𝑏𝑖 = 1.

The pair {𝛼𝜀 , 𝛼1} is determined to satisfy the payload constraint

𝑟 (𝑛)𝑛 = 𝐾𝛼𝜀 + (𝑛 − 𝐾)𝛼1 . A special type of a bivalued strategy is

the uniform sender, which assigns 𝛼𝑖 = 𝑟 (𝑛) to all images𝑋𝑖 is with

𝛼𝜀 = 𝛼1 = 𝑟 (𝑛). The greedy sender prefers to embed the payload in

𝜀 images. Formally, if 𝑟 (𝑛)𝑛 ≤ 𝐾 log2 3, the greedy sender selects

𝛼𝜀 = 𝑟 (𝑛)𝑛/𝐾 and 𝛼1 = 0. When 𝑟 (𝑛)𝑛 > 𝐾 log2 3, 𝛼𝜀 = log2 3 and

𝛼1 = (𝑟 (𝑛)𝑛 − 𝐾 log2 3)/(𝑛 − 𝐾).

4 EFFECT OF SOURCE BIASING ON
SECURITY

In this section, we formulate Warden’s hypothesis test and derive

the most powerful pooled detector. Then, we analyze and discuss

how its performance is affected by source biasing.

4.1 Optimal pooler

In practice, Alice and the Warden will use their own SIDs for

detector-informed spreading and pooled steganalysis, respectively.

To avoid complicating the analysis with a mismatch between their

SIDs, we assume in this section that Alice uses Warden’s SID 𝑑 .

When verifying the analysis in practice in Section 5, we carry out

experiments with both SIDs matched as well as mismatched. We

will also assume that the parameter 𝑝 is known both to Alice and the

Warden and the Warden knows her spreading strategy, biasing pa-

rameter 𝑞, and rate 𝑟 (𝑛). Moreover, we assume that the embedding

does not change the response curve slope 𝑏𝑖 , which is a reasonable

assumption for small rates 𝑟 (𝑛).
Referring to our model of Warden’s detector soft output on

cover (1) and stego (2) images, to avoid modeling the distribution of

the variances 𝜎2𝑖 across scenes and the oracle itself, we assume that

all variances are the same across scenes 𝜎2𝑖 = 1 for all 𝑖 . Furthermore,
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we grant the Warden the knowledge of 𝜇𝑖 , which greatly simpli-

fies the problem as the Warden now faces the following simple

hypothesis testing problem:

H0 : 𝑏𝑖 ∼ B(𝑝), 𝑦𝑖 ∼ N(0, 1) for all 𝑖

H1 : 𝑏𝑖 ∼ B(𝑞), 𝑦𝑖 ∼ N(𝑏𝑖𝛼𝑖 (𝐾), 1) for all 𝑖
(7)

The most powerful detector for (7) is the likelihood ratio test (LRT)

𝐿(b, y) =
𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖𝛼𝑖 (𝐾) −
1

2

𝑛∑︁
𝑖=1

𝑏2𝑖 𝛼
2
𝑖 (𝐾)

+ 𝐾 log
𝑞

𝑝
+ (𝑛 − 𝐾) log 1 − 𝑞

1 − 𝑝 . (8)

We introduce two functions to help condense some of the ex-

pressions. The first is the steganographic deflection coefficient of

a bag (the quadratic term in the expectation of 𝐿(b, y) underH1)

conditioned on the event 𝐾 = 𝑘 :

Δ
2 (𝑘) = 1

2

𝑛∑︁
𝑖=1

𝑏2𝑖 𝛼
2
𝑖 (𝑘). (9)

Next is the likelihood ratio between two binomial random variables

as a function of 𝑘

𝐿binom (𝑘) = 𝑘 log
𝑞

𝑝
+ (𝑛 − 𝑘) log 1 − 𝑞

1 − 𝑝 . (10)

The false alarm and correct detection probabilities of 𝐿(b, y) are

𝑃FA (𝑥) =
𝑛∑︁

𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘𝑄

(
𝑥 − 𝐸0 (𝑘)√︁

𝑉 (𝑘)

)
(11)

𝑃D (𝑥) =
𝑛∑︁

𝑘=0

(
𝑛

𝑘

)
𝑞𝑘 (1 − 𝑞)𝑛−𝑘𝑄

(
𝑥 − 𝐸1 (𝑘)√︁

𝑉 (𝑘)

)
, (12)

owing to the law of total probability where

𝐸0 (𝑘) = 𝐿binom (𝑘) − Δ2 (𝑘), (13)

𝐸1 (𝑘) = 𝐿binom (𝑘) + Δ2 (𝑘), (14)

𝑉 (𝑘) = 2Δ2 (𝑘) . (15)

4.2 Morphing of ROC

Figure 1 shows the ROCs of Warden’s detector Eqs. (11)ś(12) for

𝑝 = 0.4, the greedy sender, and relative payload 𝑟 = 𝑟 (𝑛) = 1.

Each ROC corresponds to a different 𝑞. The top figure has 𝜀 = 0.01

and 𝑛 = 4 while the bottom figure has 𝜀 = 0.05 and 𝑛 = 8. With

increasing bias 𝑞 − 𝑝 , the ROCs for both cases łmorphž in a similar

manner. TheWarden loses on detection power for small false alarms

and gains for large false alarms. Since for practical steganalysis it

is important to keep false alarms low, one can say that the biasing

initially helps the steganographer. For sufficiently large bias, the

biasing eventually decreases the security. Intuitively, the negative

effect of biasing will be perceived sooner for larger 𝑛 as the change

in the source becomes easier to detect. The jagged character of the

ROCs for the largest bias is due to 𝐿binom (𝑘) (10) and it is more

pronounced for smaller bags 𝑛.

For the two examples shown in the figure, the parameters 𝜀, 𝑟 ,

and 𝑝 were chosen to approximately match the experimental setup

with łbinarized ALASKA IIž in Section 5 so that one can contrast the

experiments with the theoretically derived morphing of the ROC.
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Figure 1: Examples of howROCs forWarden’s LRTpooler (8)

morph with bias 𝑞. Top: 𝜀 = 0.01, 𝑛 = 4. Bottom: 𝜀 = 0.05, 𝑛 = 8.

Both: greedy sender, 𝑝 = 0.4 and 𝑟 = 1.

We wish to stress that the ROC morphing is a general phenomenon

that can be observed for a wide range of the parameters 𝜀, 𝑟 , 𝑝 , and

various bag sizes 𝑛. The morphing also motivates us to define the

bias gain at a selected 𝑃FA as the largest drop in 𝑃D of Warden’s

optimal pooler the steganographer can achieve by selecting the

bias optimally:

𝛾bias (𝑃FA) = 𝑃D (𝑃FA, 𝑝) −min
𝑝≤𝑞

𝑃D (𝑃FA, 𝑞) (16)

where 𝑃D (𝑃FA, 𝑞) is the power of Warden’s optimal pooler at false

alarm 𝑃FA when the steganographer samples from the source with

B(𝑞). Note that the bias gain is also a function of the steganographic
method, payload size, the spreading strategy, 𝜀, and Warden’s SID.

Equipped with this measure, we plot two more figures to better

convey the nature of the bias gain.

Figure 2 shows the true positive rate 𝑃D for the false alarm fixed

to 𝑃FA = 0.01 as a continuous function of 𝑞 across four different bag
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Figure 2: True positive rate 𝑃D at 𝑃FA = 0.01 versus 𝑞 for

the greedy sender and four bag sizes 𝑛 ∈ {4, 8, 16, 32}, 𝑟 = 1,

𝜀 = 0.01, 𝑝 = 0.4, 𝑞 ∈ [0.4, 0.6]. As 𝑛 increases, the bias gain

𝛾bias (0.01) increases and the optimal 𝑞 decreases.
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Figure 3: Bias gain 𝛾bias (𝑃FA) for four different bag sizes for

the greedy sender, 𝑟 = 1, 𝜀 = 0.01, 𝑝 = 0.4. The figure demon-

strates the security benefit (i.e. decrease in 𝑃D) of biasing for

small false alarm rates.

sizes. For maximal bias gain (16), Alice should bias more strongly for

smaller bag sizes 𝑛 than for larger ones, which is intuitive because

it is harder to detect the source change from smaller bags. Also, the

gain is larger for larger bags (𝑛 = 32). These observations appear

universal across other choices of the parameters 𝜀, 𝑟 , and 𝑝 .

Figure 3 is another way to show how the ROCs morph with bias.

In this figure, we plot 𝛾bias (𝑃FA) for a range of fixed false alarms

𝑃FA for four different bag sizes and the greedy sender with 𝑟 = 1

and 𝜀 = 0.01. For each 𝑃FA and 𝑛, the value of 𝑞 differs and is chosen

to minimize 𝑃D (𝑃FA, 𝑞) as in Eq. (16).

4.3 Biasing for large 𝑛

In this section, we study the effect of biasing on security in the

asymptotic case when the number of communicated images 𝑛 ap-

proaches infinity. An already established general result is the square

root law (SRL), which states that the critical rate for Alice to achieve

constant detectability is 𝑟 (𝑛) ∝ 1/
√
𝑛. Larger rates allow the War-

den to build an arbitrarily accurate detector while smaller rates will

lead to asymptotically perfect security. For a precise formulation of

this result, the reader is referred to, e.g. [15]. When Alice addition-

ally samples from the cover source with a bias, she needs to asymp-

totically adjust her bias as well to prevent becoming asymptotically

perfectly detectable. The following Asymptotic Biasing Theorem

(ABT), which is proved in the appendix, summarizes these findings

for bivalued payload spreading strategies (recall Section 3.4).

Theorem 4.1. [Asymptotic Biasing Theorem] For a bivalued cover

source (6) and a bivalued spreading strategy, when Alice adjusts her

rate 𝑟 (𝑛) and bias 𝑞(𝑛) to follow critical rates in the sense that these

two limits exist 𝑐𝑟 = lim𝑛→∞ 𝑟2 (𝑛)𝑛, 𝑐𝑝 = lim𝑛→∞ (𝑞(𝑛)−𝑝)
√
𝑛, the

following holds regarding the security of the steganographic channel:

When 𝑐𝑟 = 0 and 𝑐𝑝 = 0, the communication is asymptotically

perfectly secure.

When 𝑐𝑟 = ∞ or 𝑐𝑝 = ∞, the communication is asymptotically

perfectly detectable.

When Alice uses the greedy or uniform senders and 𝑐𝑟 < ∞ and

𝑐𝑝 < ∞, the performance of Warden’s most powerful detector is

described with a Gaussian ROC with deflection 𝑑2
greedy

=
𝑐𝑟 𝜀

2

𝑝 +
𝑐2𝑝

𝑝 (1−𝑝) and 𝑑
2
uniform

= (𝑝𝜀2 + 1 − 𝑝)𝑐𝑟 +
𝑐2𝑝

𝑝 (1−𝑝) .

The theorem essentially states that in order to prevent asymptot-

ically perfect detection due to source biasing, the sender needs to

scale the bias 𝑞(𝑛) − 𝑝 by 1/
√
𝑛, which is analogous to scaling rate

𝑟 (𝑛) by 1/
√
𝑛 to achieve constant detectability per the SRL. When

both the payload and the bias are adjusted at their critical rates,

the ROC becomes symmetrical and Gaussian. In the third part of

the ABT, observe that the first terms of 𝑑2
greedy

and 𝑑2
uniform

only

depend on Alice’s rate while the second terms only depend on her

bias and are strictly monotone in 𝑐𝑝 . Thus, when communicating

a square root rate 𝑟 (𝑛) ∝ 1/
√
𝑛, Alice should avoid asymptotically

biasing altogether in the sense that 𝑐𝑝 = 0; she will only become

more detectable if 𝑐𝑝 > 0. This theorem is validated experimen-

tally on real images with poolers built with machine learning in

Section 5.6.

We note that the third part of theABT is a special case only for the

greedy and uniform senders since our proof directly computes the

deflection. We conjecture that this part generalizes to all bivalued

senders. This extension would require adopting some strategy on

how 𝛼𝜀 and 𝛼1 change with 𝑛.

5 EXPERIMENTS

The purpose of the experiments in this section is to find out whether

the effect of source biasing on Warden’s detector observed in our

models transfers to the real world. In particular, we are interested in

verifying the morphing of the ROC, the qualitative trends of the bias

gain and optimal bias as a function of bag size, and the asymptotic
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scaling theorem. We present two sets of experiments. In Section 5.5,

we verify the theoretical results from Section 4 on an image dataset

that approximately contains only easy and difficult-to-steganalyze

images. In Section 5.6, we investigate the security effects of biasing

on a realistic dataset which necessitates a more general method

of biasing. In all experiments, Alice uses the embedding algorithm

HILL [17] simulated to perform on the rateśdistortion bound.

5.1 Datasets

All experiments were executed onALASKA II [7] developed as in [7]

without the final JPEG compression step. This dataset contains

75,000 images, which we randomly split into three disjoint parts for

our experiments: Split A, Split W, and Split BSPS.4 Split A consists

of 25k images reserved for Alice, and Split W consists of 25k images

reserved for the Warden. We describe how Alice and the Warden

use Split A and W for training SIDs in Section 5.4. The remaining

25k images in Split BSPS are further divided into Split P (one third

of Split BSPS) used to form bags for training the Warden’s pooler

while the remaining two thirds, named TST, are used for evaluation.

5.2 Estimating response curves

In practice, we estimate image 𝑋𝑖 ’s response curve (3), 𝜚𝑖 , and its

slope𝑏𝑖 for a SID𝑑 as follows. For each𝛼 ∈ P in the grid of payloads

P = {0.05, 0.1, 0.2, . . . , 1.4, 1.5}, (17)

we compute 𝜚𝑖 (𝛼) by averaging the detector response of 100 em-

beddings with random stego keys. For values of 𝛼 between the

grid points, 𝜚𝑖 (𝛼) is computed by linear interpolation. Given that

𝑋𝑖 has embedding capacity 𝐶𝑖 ≤ log2 3, we estimate the slope as

𝑏𝑖 = (𝜚𝑖 (𝐶𝑖 ) − 𝜚𝑖 (0))/𝐶𝑖 .

5.3 Greedy sender

Since the images in our evaluation datasets have a continuous

range of slopes, we modified the greedy sender (Section 3.4) in the

following way. Given a set of 𝑛 images, the sender (Alice) uses a SID

to estimate their response curves, orders them from the smallest

slope to the largest, and then embeds the images one by one at their

capacity until the required payload is embedded. The last image

may be embedded only partially.

5.4 Single-image detectors and poolers

We wish to point out that both the sender and the Warden use SIDs

to achieve their goals. Alice’s detector will be denoted as 𝑑A, while

𝑑W will be used for Warden’s SID. For our experiments, we trained

two different detectors that will be given to Alice and the Warden:

two versions of SRNet [3] trained on Split A and Split W denoted

by SRNetA and SRNetW, respectively. Both were pre-trained on

ImageNet with the binary task of steganalyzing J-UNIWARD [12]

(the so-called JIN pre-training exactly as described in [5]). The

refinement of all detectors to detect HILL was done with stego

images embedded with relative payloads randomly drawn from P.
Each split was randomly partitioned into disjoint subsets of 22k,

1k, and 2k images for training, validation, and testing, respectively.

The CNNs logit was used as the detector’s soft response 𝑑 .

4BSPS stands for łbatch steganography & pooled steganalysisž.

For fixed bag size 𝑛, the Warden’s pooling function was imple-

mented as a random forest (RF) [4] (Python’s package scikit-learn)

on a 2𝑛 + 2-dimensional feature vector5 extracted from all images

in the bag

(𝑑W (𝑋1), . . . , 𝑑W (𝑋𝑛), 𝑏1, . . . 𝑏𝑛, 𝑛𝜀/𝑛, 𝜋CORR), (18)

where 𝑑W (𝑋𝑖 ) is the soft output of Warden’s detector and 𝑏𝑖 is the

response curve slope of the 𝑖th image, 𝑛𝜀 is the number of 𝜀-type

images in the bag, and

𝜋CORR =

𝑛∑︁
𝑖=1

𝛼𝑖𝑑
W (𝑋𝑖 ) (19)

is the correlation of Warden’s SID soft outputs with payloads that

might reside in the images. We note that the slopes as well as

the payloads are computed from the cover versions of 𝑋𝑖 , which

makes Warden’s pooler clairvoyant. We do this for the reasons

of excessive computational complexity as estimating the response

curves from multiple embeddings from each image in the bag and

estimating the payloads is very computationally expensive. One

can also think of this clairvoyant pooler as the worst case scenario

for Alice. Moreover, there is evidence (see Section 7.2 in [24]) that

the performance of the Warden’s pooler is largely unaffected when

the Warden estimates the payloads and the response curve slopes

from the images at hand.

We remind the reader that we use Split P to generate 5k cover and

5k stego bags for training the pooler. The features are normalized

to zero sample mean and unit variance. A grid search was used to

estimate the RF hyper parameters, which include the number of

estimators and the maximum depth. Every step of the grid search is

Monte-Carlo cross-validated with 5 iterations with fixed train-test

split ratio of 2 : 1.

5.5 Experiments on binarized ALASKA II

The experiments in this section are executed on a subset of Split BSPS

that we call łbinarized ALASKA IIž which is obtained by rejection

sampling to make the dataset closer to the binomial source model

considered in our analysis in Sections 3ś4. To stay within the spirit

of the model, this dataset consists of two groups of images: easy-to-

steganalyze images with steep response curves (𝑀-type images) and

hard-to-steganalyze images with almost flat response curves (𝜀-type

images). This grouping was based on the slopes of their response

curves. For an 𝜀-type image𝑋 , we requested that 10−4 ≤ 𝑏𝑋 ≤ 0.08,

while for 𝑀-type images 0.8 ≤ 𝑏𝑋 ≤ 3.2. The groups contained

𝑁𝜀 = 3204 and 𝑁𝑀 = 7418 images with average slopes 0.0213 and

2.001. As mentioned above, binarized ALASKA II was split into a

training set for the Warden’s pooler (one third), named Split P, and

an evaluation set (two thirds), named TST.

The biasing was executed as described in Section 3.3. When Alice

samples from the binarized set without a bias, she selects an 𝜀-type

image with probability 𝑝 = 𝑁𝜀/(𝑁𝜀 +𝑁𝑀 ) � 0.3016 and an𝑀-type

image with probability 1−𝑝 . When sampling with a bias, Alice first

selects the group (𝜀-type with probability 𝑞 > 𝑝) and then randomly

draws an image from the group. This corresponds in spirit to the

biasing considered within our model. We remind the reader that

5We experimented with a variety of feature vectors but only report on the ones that
performed the best.
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Figure 4: Example of ROC’s morphing for Warden’s RF

pooler with bias 𝑞 for greedy sender and 𝑛 = 16, 𝑟 (𝑛) = 0.5

on binarized ALASKA II. The figure demonstrates a qualita-

tive match with the theoretical results.

Alice forms bags from TST. Once a bag is formed, the selected

sender (greedy or uniform) is used to spread the payload across

images in the bag. In case the bag does not have enough capacity

to embed the requested payload, the bag is resampled until the

capacity requirement is met.6 Eventually, all 𝑛 images 𝑋1, . . . , 𝑋𝑛
in the bag are passed through Warden’s detector 𝑑W to obtain soft

outputs 𝑑W (𝑋𝑖 ).
As our first batch of experiments, we verified the morphing of

the ROC of Warden’s pooler with increased bias. We experimented

with the following combinations of bag sizes and rates 𝑛, 𝑟 (𝑛) ∈
{(2, 1), (4, 1), (8, 1), (16, 0.5), (16, 1)}. In all cases, the ROCs quite

closely mimicked the predicted morphing, including the lowered

true positive rates for small false alarms, increased true positive

rate for larger false alarms, and the łjaggedž shape for strong source

biasing. Figure 4 shows a typical example for 𝑛 = 16 and 𝑟 (𝑛) = 0.5,

which matches the trends predicted by our analysis (Figure 1). In

Figure 5, we plot 𝑃D for a fixed 𝑃FA as a function of the bias for

several bag sizes. Again, we see a qualitatively close match with

Figure 2 in terms of the optimal value of the bias decreasing with

increased bag size. The bias gain 𝛾bias also initially increases with

increased bag size except for the largest bag size 𝑛 = 16 because

the 𝑃D at this level of 𝑃FA approaches 1.

Next, we turn our focus to verifying the scaling as expressed by

the ABT. We use the term sub-SR (sub square root) for the situation

when the rate (or bias) decreases faster with 𝑛 than what would

guarantee asymptotic constant statistical detectability: 𝑟2 (𝑛)𝑛 → 0

(or (𝑞(𝑛)−𝑝)
√
𝑛 → 0). To the contrary, super-SR (super square root)

adjustment means that the adjustment is slower, which induces

perfect detection: 𝑟2 (𝑛)𝑛 →∞ (or (𝑞(𝑛) −𝑝)
√
𝑛 →∞). To this end,

we executed the following three experiments.

(1) Adjusting both the rate and the bias sub-SR to verify that

the performance of Warden’s pooler approaches random

guessing. See Figure 6 (left) and Figure 7.

6This happens infrequently and only when embedding very large payloads.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
D
(P

F
A
=
0.
01
)

n = 16

n = 8

n = 4

n = 2

Figure 5: True positive rate 𝑃D at 𝑃FA = 0.01 versus 𝑞 for the

greedy sender and four bag sizes, 𝑛 ∈ {2, 4, 8, 16}, 𝑟 (𝑛) = 1

on binarized ALASKA II. The optimal bias decreases with

increased bag size as observed in our model in Figure 2.

(2) Adjusting the rate and bias for constant statistical detectabil-

ity to verify the convergence and symmetrization of the

ROCs. See Figure 6 (middle).

(3) Adjusting the rate super-SR and bias sub-SR to verify that

asymptotically the overly large rate gives perfect detectabil-

ity regardless of bias gain. See Figure 6 (right).

For our experiments, we fix the relative payload for bag size 𝑛 = 4

at 𝑟 (4) = 0.5 and the biasing parameter 𝑞(4) = 0.4, which is the

optimal bias for this bag size and rate as determined experimentally.

With increasing bag size 𝑛, the relative payload and the biasing are

scaled as

𝑞(𝑛) − 𝑝 = (𝑞(4) − 𝑝)
( 4
𝑛

)1−𝜆𝑏
(20)

𝑟 (𝑛) = 𝑟 (4)
( 4
𝑛

)1−𝜆𝑟
. (21)

The scaling for the rate and bias is controlled by the two expo-

nents 𝜆𝑟 and 𝜆𝑏 , respectively. Sub-SR adjustment corresponds to

𝜆𝑟 , 𝜆𝑏 < 1/2 (the rate and bias decay more rapidly with 𝑛) while

super-SR scaling uses 𝜆𝑟 , 𝜆𝑏 > 1/2. When 𝜆𝑟 = 𝜆𝑏 = 1/2, the
third part of the ABT predicts asymptotic constant statistical de-

tectability and a Gaussian ROC. This is indeed confirmed in Figure 6

(middle). Note that the ROCs for the largest bag sizes are visually

indistinguishable. In Figure 6 (right), the biasing is reduced more

aggressively than the rate (sub-SR for bias 𝜆𝑏 = 1/4, super-SR
for rate 𝜆𝑟 = 3/4), and we observe the Warden’s pooler approach

perfect detection. When both the rate and bias are adjusted with

𝜆𝑟 = 1/4, 𝜆𝑏 = 1/4 (sub-SR), the ROCs gradually flatten effectively

approaching that of a random guesser (Figure 6 left) in agreement

with the ABT. Since some detection power remains even for the

largest bag size, we include a log-log plot of 0.5− 𝑃E (𝑛) vs. bag size
𝑛 in Figure 7 to verify that the ROCs are indeed tending towards

random guessing. Assuming the ROCs are Gaussian, then using the
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Figure 6: Asymptotic trends of the ROC of Warden’s pooler on binarized ALASKA II for uniform sender when adjusting the

bias and the rate based on Eqs.(20) and (21). The first parameter in the parentheses is the scaling exponent used for biasing,

while the second parameter is exponent for the rate.
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Figure 7: Log-log plot of 0.5 − 𝑃E (𝑛) vs. bag size 𝑛 when ad-

justing both the rate and bias sub-SR on binarized ALASKA

II (see Figure 6). We experimentally confirm a tendency to-

ward perfect security.

fact that the deflection (KL-divergence) for this particular scaling

of the rate is proportional to 𝑛−1/2 we have

𝑃E (𝑛) = 𝑄
( 1
2
𝑛−1/4

)
�

1

2
− 1

2
√
2𝜋
𝑛−1/4 (22)

by the first-order Taylor expansion of 𝑄 (𝑥) at 𝑥 = 0. Thus, 0.5 −
𝑃E (𝑛) ∝ 𝑛−1/4 and we should observe 0.5 − 𝑃E (𝑛) tend toward a

line of slope −1/4 in a log-log plot. Note that to stay closer with our

modeling assumptions, Alice’s SID used for spreading was the same

as Warden’s SID but the conclusions drawn and the qualitative

nature of the results remain valid when they use different SIDs.

5.6 Biasing in real life conditions

To find out the impact of biasing in a more realistic dataset and

under more realistic conditions, we executed the next experiment

on the original (i.e., non-binarized) Split BSPS of ALASKA II. We

used the same greedy sender as in the previous section but the

biasing algorithm needed an adjustment because now we have a

continuous distribution of slopes.

Consider a continuous and strictly increasing CDF 𝐹 . Biasing

the sampling of 𝐹 can be implemented by a modified inverse trans-

form sampling algorithm. Without biasing, a sample from 𝐹 can

be generated by first sampling a uniform r.v. 𝑈 ∼ U[0, 1] and then

computing 𝐹−1 (𝑈 ) where 𝐹−1 is the inverse CDF, or quantile func-
tion. Now consider a beta random variable 𝑌 ∼ Beta(𝛼∗, 𝛽∗) whose
CDF is denoted by 𝐺𝛼∗,𝛽∗ . If we instead compute 𝐹−1 (𝐺−1

𝛼∗,𝛽∗ (𝑈 )),
our sample will follow the distribution given by

P(𝐹−1 (𝐺−1
𝛼∗,𝛽∗ (𝑈 )) ≤ 𝑢) = P(𝑈 ≤ 𝐺𝛼∗,𝛽∗ (𝐹 (𝑢))) = 𝐺𝛼∗,𝛽∗ (𝐹 (𝑢)) .

(23)

for 𝑢 ∈ [0, 1] (0 for 𝑢 < 0, 1 for 𝑢 > 1). Observe that 𝑌
𝑑
= 𝐺−1

𝛼∗,𝛽∗ (𝑈 )
(equal in distribution) so we can view our biasing method as sam-

pling quantiles of 𝐹 using a beta random variable instead of the usual

U[0, 1]. We chose the beta distribution since Beta(1, 1) 𝑑= U[0, 1],
its support is [0, 1], and 𝐺𝛼∗,𝛽∗ is continuous in its parameters

𝛼∗, 𝛽∗ > 0.

Suppose we obtain a dataset of 𝑁 i.i.d. samples 𝑋1, . . . , 𝑋𝑁 ∼ 𝐹 .
Using 1𝐴 to denote the indicator function of an event𝐴, we consider

the empirical distribution function (ECDF) of the samples

𝐹𝑁 (𝑢) =
1

𝑁

𝑁∑︁
𝑘=1

1𝑋𝑘 ≤𝑢 . (24)

Our goal is to generate 𝑛 biased samples from 𝐹𝑁 without replace-

ment. We use the inverse transform sampling method, except to im-

plement sampling without replacement, we sample from a sequence

of ECDFs. Specifically, to sample the 𝑖th variable given we already

obtained samples 𝑋𝑘1 , 𝑋𝑘2 , . . . , 𝑋𝑘𝑖−1 (indexed by 𝑘1, . . . , 𝑘𝑖−1) we
perform inverse transform sampling using the ECDF:

𝐹
(𝑖)
𝑁
(𝑢) = 1

𝑁 − 𝑖
∑︁

𝑘∈{1,...,𝑁 }
𝑘∉{𝑘1,...,𝑘𝑖−1 }

1𝑋𝑘 ≤𝑢 , (25)
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Algorithm 1 A procedure for obtaining samples from a finite

dataset in a biased (or non-uniformly random) fashion. The proce-

dure returns the indices used to uniquely query a dataset.

// Set dataset size 𝑁 , number of samples 𝑛, bias-

ing parameter 𝑞 ≥ 1

𝑍1, . . . , 𝑍𝑛 ← obtain 𝑛 iid realizations of Beta(1/𝑞, 1)
for 𝑖 = 1 to 𝑛:

𝑚𝑖 ← ceil ((𝑁 − 𝑖 + 1)𝑍𝑖 )
for 𝑖 = 1 to 𝑛:

𝑘𝑖 ←𝑚𝑖

for 𝑗 = 1 to 𝑖 − 1:
if 𝑚𝑖−𝑗 ≤ 𝑘𝑖:
𝑘𝑖 ← 𝑘𝑖 + 1

return 𝑘1, . . . , 𝑘𝑛

where the sum is over all indices 𝐾 = 1, . . . , 𝑁 not equal to indices

already sampled 𝑘1, . . . , 𝑘𝑖−1. Algorithm 1 depicts how the sampling

is done without explicitly computing the ECDFs.

To relate this procedure to a biased sampling of bags, we associate

the distribution of slopes to the CDF 𝐹 and the size of evaluation set

to 𝑁 . Alice samples covers with a bias by selecting 𝛼∗, 𝛽∗. For easier
analysis and interpretation, it is advantageous to have a single bias-

ing parameter, which we again denote 𝑞. The choice of how the beta

distribution should be parameterized by 𝑞 is non-trivial. We tried

two simple parametrizations: Beta(1/𝑞, 1) and Beta(1, 𝑞) both for

𝑞 ≥ 1. We found that the former, Beta(1/𝑞, 1), permits a larger bias

gain likely due to the latter parametrization Beta(1, 𝑞) morphing

the right tail of the distribution of slopes too aggressively. Indeed,

the bivalued spreading strategies (and spreading strategies in gen-

eral [24]) prioritize images belonging to the left tail, so morphing

the right tail contributes relatively less to the gain in steganographic

security. Hence, for all continuous biasing experiments below, we

use the parametrization Beta(1/𝑞, 1) in Algorithm 1.

For the following experiments, the sender uses 𝑑A = SRNetA for

biasing and for spreading while the Warden uses 𝑑W = SRNetW.

The feature vector for the machine-learning built pooler is the same

as above (18) with the only difference that we removed the quantity

𝑛𝜀/𝑛 because there are no groups of images with distinct slopes in

the evaluation datasetÐthe slopes are continuously distributed.

Figure 8 shows the ROCs of Warden’s pooler for bag size 𝑛 = 4

when increasing the biasing parameter 𝑞 in Beta(1/𝑞, 1) used for

continuous biasing. We can see that many of the ROC morphing

characteristics observed in our model and binarized ALASKA II are

preserved. For instance, with increased bias 𝑃D (𝑃FA) is monotoni-

cally increasing for large enough fixed 𝑃FA, and we see the same

initial decrease in 𝑃D (𝑃FA) for low fixed 𝑃FA. However, the jagged

characteristic of the ROCs is gone due to the continuous nature of

our biasing.

Figure 9 presents 𝑃D (𝑃FA = 0.02) vs. the continuous biasing

parameter 𝑞 ≥ 1 for various bag sizes. We see that the trend of

optimal 𝑞 monotonically decreasing in bag size 𝑛 is preserved. Ad-

ditionally, we see that 𝛾bias exhibits similar monotonic trends seen

in the experiments on binarized ALASKA II and the model. Similar

to Figure 5, for 𝑛 = 16, 𝛾bias decreases as 𝑃D approaches 1.
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Figure 8: ROCs ofWarden’s pooler for bag size 𝑛 = 4 and rate

𝑟 = 0.5 for a range of continuous biasing parameter values

𝑞 ≥ 1.
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Figure 9: 𝑃D at 𝑃FA = 0.02 vs. the continuous biasing parame-

ter 𝑞 for bag sizes 𝑛 = 2, 4, 8, 16 and fixed rate 𝑟 = 𝑟 (𝑛) = 0.7.

To demonstrate that the bias gain manifests robustly w.r.t. War-

den’s pooler, besides the results with the clairvoyant pooler, we

provide limited evidence7 for a realistic (non-clairvoyant) version

of this pooler when theWarden estimates the response curve slopes

and payloads from images at hand using feedback from her own

detector 𝑑W. To be more precise, 𝑏𝑖 and 𝛼𝑖 in the feature vector are

replaced with Warden’s estimates and 𝜋CORR (19) is also computed

with the estimates. Moreover, we add to our study another simple

pooler that is agnostic w.r.t. slopes and payloads. It is trained as

RF on a subset of the feature vector 18 with only 𝑛 soft outputs

𝑑W (𝑋𝑖 ). Figure 10 confirms that the bias gain robustly manifests for

all three poolers irrespective of Warden’s knowledge of payloads

and slopes.

7Experiments with non-clairvoyant pooler are very computationally demanding.
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Figure 10: 𝑃D at 𝑃FA = 0.02 vs. the continuous biasing param-

eter 𝑞 for bag size 𝑛 = 2 and rate 𝑟 = 0.5 for three different

poolers described in the text.

6 CONCLUSIONS

The steganographer can decrease her chances of being caught by

theWarden by selecting covers in which steganographic embedding

changes are less detectable. This, however, changes the cover source,

which is detectable on its own. In this paper, we study the trade

off between the increased security with respect to detectors of

embedding changes and the vulnerability to source detectors to

find out the impact of biasing the source.We beginwith a theoretical

study from a simple sourcemodel and then confirm the theoretically

predicted findings experimentally with a source of real images and

modern detectors built with deep learning. Our findings can be

summarized as follows:

(1) With increased bias towards selecting images that are harder

to steganalyze, the true positives of Warden’s optimal pooler

start decreasing for small false alarm rates but increase for

large false alarms, which indicates a steganographer’s gain.

(2) Measuring this łbias gainž as the loss of Warden’s detection

power at a fixed false alarm rate, with increased number

of uses of the stego channel, the optimal value of the bias

decreases.

(3) As the number of communicated images approaches infinity,

both the payload and the bias need to be adjusted at their

critical rates for constant asymptotic statistical detectability.

Our experiments with real datasets and detectors indicate that

cover selection can indeed produce a significant gain in security in

practice, which is relevant for practitioners. We note our findings

qualitatively align with the recent work [10]; choosing difficult

sources helps Alice only up to a certain point. Many intriguing

open questions remain to be answered, including optimizing the

source biasing algorithm and jointly optimizing the biasing and

payload allocation among multiple images.
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APPENDIX

Proof of Theorem

Before starting the proof, we state several useful facts. We write

𝑓 (𝑛) ≍ 𝑔(𝑛) when 𝑓 (𝑛) = 𝑔(𝑛) (1 + 𝑜 (1)) as 𝑛 →∞.
For any 𝑥 ,

𝑥 log
𝑞

𝑝
+ (1 − 𝑥) log 1 − 𝑞

1 − 𝑝 = (𝑥 − 𝑝)ℓ (𝑝, 𝑞) − 𝐷KL (𝑝 | |𝑞) (26)

ℓ (𝑝, 𝑞) = log
𝑞

𝑝

(1 − 𝑝)
(1 − 𝑞) . (27)

When (𝑞(𝑛)−𝑝)
√
𝑛 → 𝑐𝑝 , by using Taylor expansion of log(1+𝑥)

at 𝑥 = 0, it is straightforward to show that

√
𝑛ℓ (𝑝, 𝑞) =

𝑐𝑝

𝑝 (1 − 𝑝) +𝑂 (𝑛
−1/2) (28)

𝑛𝐷KL (𝑝 | |𝑞) =
𝑐2𝑝

2𝑝 (1 − 𝑝) +𝑂 (𝑛
−1/2). (29)

Ðś

A version of the De MoivreśLaplace theorem follows from the

Stirling’s formula: Let 𝑐 > 0 and 1/2 < 𝑎 < 2/3. For any𝑘 , |𝑘−𝑛𝑝 | <
𝑐𝑛𝑎 , as 𝑛 →∞(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 =

1√︁
2𝜋𝑛𝑝 (1 − 𝑝)

𝑒
− (𝑘−𝑝𝑛)

2

2𝑛𝑝 (1−𝑝 )
(
1 +𝑂

(
1/𝑛2−3𝑎

))
.

(30)

For 𝑘 < 𝑛𝑝 (𝑘 > 𝑛𝑝), the left (right) tails of the cumulative

distribution function of the binomial distribution are bounded by

the Hoeffding’s bound

Pr{Binom(𝑝, 𝑛) ≶ 𝑘} ≤ 𝑒−2𝑛 (𝑝−𝑘/𝑛)2 , (31)

which translates for 𝑘 < 𝑛𝑝 − 𝑐𝑛𝑎 and 𝑘 > 𝑛𝑝 + 𝑐𝑛𝑎 to

Pr{Binom(𝑝, 𝑛) ≶ 𝑘} ≤ 𝑒−2𝑐2𝑛2𝑎−1
. (32)

Ðś

Given 𝑌 ∼ N(𝜇, 𝜎2) and 𝑍 ∼ N(0, 1) independent, we have by
the definition of the𝑄 function and the law of total probability that

E[𝑄 (𝑌 )] = E[P(𝑍 > 𝑌 |𝑌 )] = P(𝑍 > 𝑌 ) . (33)

Since 𝑍 − 𝑌 ∼ N(−𝜇, 𝜎2 + 1), we can compute the right hand side

via the 𝑄 function

P(𝑍 > 𝑌 ) = 𝑄
(

𝜇
√
𝜎2 + 1

)
. (34)

Asymptotic perfect security

The first part of the theorem follows from bounds on the KL-

divergence between the distributions of the HT (7):

DKL (H0 | |H1) = −E [𝐿(b, y) |H0]
= E

[
Δ
2 (𝐾) |H0

]
− E [𝐿binom (𝐾) |H0] . (35)

For a bivalued spreader with 𝛼𝜀 , 𝛼1, Δ
2 (𝑘) is upper bounded by

the deflection for a spreader that puts all payload into images with

slope 1. Such images receive 𝛼1 = 𝑛𝑟 (𝑛)/(𝑛 − 𝑘) bpp as long as

𝑛𝑟 (𝑛) ≤ (𝑛 −𝑘) log2 3. Since 𝑛𝑟2 (𝑛) → 0, 𝑛𝑟2 (𝑛) < 𝛿 for any 𝛿 > 0

for sufficiently large 𝑛, and thus 𝑛𝑟 (𝑛) < 𝑛1/2𝛿1/2 . This sub-linear
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payload will thus fit into images with slope 1 for all 𝑘 ≤ 𝑛𝑠 , for any
0 ≤ 𝑠 < 1 for sufficiently large 𝑛. We write

E
[
Δ
2 (𝐾) |H0

] (𝐻 )
≍ 1

2

𝑛𝑠∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘𝑘 𝑛

2𝑟2 (𝑛)
(𝑛 − 𝑘)2

≤ 1

2

𝑛𝑠∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘𝑛𝑠 𝑛

2𝑟2 (𝑛)
(𝑛 − 𝑛𝑠)2

=
1

2
𝑛𝑟2 (𝑛) 𝑠

(1 − 𝑠)2
𝑛𝑠∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

≤ 1

2
𝑛𝑟2 (𝑛) 𝑠

(1 − 𝑠)2
(36)

which approaches 0 as 𝑛 → ∞. The first asymptotic equality
(𝐻 )
≍

follows from Hoeffding inequality (32) and the fact that Δ2 (𝑘) is
𝑜 (𝑛2) independently of 𝑘 .

Next, we inspect the right-most term in (35), which is the KL-

divergence between Binom(𝑝, 𝑛) and Binom(𝑞, 𝑛). Performing a

Taylor expansion at 𝑞 = 𝑝 , we get

−E [𝐿binom (𝐾) |H0] = 𝑝𝑛 log
𝑝

𝑞
+ (1 − 𝑝)𝑛 log 1 − 𝑝

1 − 𝑞

=
𝑛(𝑞 − 𝑝)2
2𝑝 (1 − 𝑝) + 𝑛𝑂 ((𝑞 − 𝑝)

3) . (37)

By supposition, this also approaches 0 and thus completes the proof

of the first statement of the theorem.

Asymptotic perfect detectability

For the second statement, we note that the optimal spreader (the

least detectable spreader) in a source of images all of the same slope

𝜀 is the uniform spreader. This is because 1
2

∑𝑛
𝑖=1 𝜀

2𝛼2𝑖 is minimal

subject to
∑𝑛
𝑖=1 𝛼𝑖 = 𝑛𝑟 (𝑛) when 𝛼𝑖 = 𝑛𝑟 (𝑛)/𝑛 = 𝑟 (𝑛) for all 𝑖 .

By the classical SRL result, this payload-limited sender is asymp-

totically perfectly detectable when 𝑛1/2𝑟 (𝑛) → ∞. Since a cover
source consisting of only images with slope 𝜀 is harder to stegana-

lyze than a source consisting of a mixture of images with slopes 𝜀

and 1, we can conclude the following. If the optimal spreading in a

strictly more difficult source is asymptotically perfectly detectable,

then any spreading in an easier source must also be asymptotically

perfectly detectable.

All that remains to show is that when𝑛(𝑞(𝑛)−𝑝)2 →∞ there ex-

ists an asymptotically perfect source detector. The test that achieves

this performance is the count of images with slope 𝜀, which we

denote 𝐾 . Since 𝐾 ∼ Binom(𝑝, 𝑛) under H0 and 𝐾 ∼ Binom(𝑞, 𝑛)
underH1, the normalized test

𝐾 − 𝑝𝑛
√
𝑛

(𝑑)
→

{
N(0, 𝑝 (1 − 𝑝)) underH0

N
(√
𝑛(𝑞 − 𝑝), 𝑞(1 − 𝑞)

)
underH1

by invoking the De MoivreśLaplace theorem, which proves asymp-

totic perfect detectability.

Case of root-rate and root -biasing

For the proof, we limit ourselves to the greedy sender (Section 3.4)

to simplify the arguments.

We begin the proof by finding the steganographic deflection (9)

for the greedy sender. Since the absolute payload satisfying 𝑟 (𝑛)𝑛 =

𝑐
1/2
𝑟 𝑛1/2 (1 + 𝑜 (1)) ensures 𝑟 (𝑛)𝑛/log2 3 < 𝑝𝑛 − 𝑐𝑛𝑎 for any 𝑐 > 0

for sufficiently large 𝑛, for 𝑘 ≥ 𝑝𝑛 − 𝑐𝑛𝑎

Δ
2
greedy

(𝑘) = 1

2

𝑘∑︁
𝑖=1

𝜀2
(
𝑟 (𝑛)𝑛
𝑘

)2
=
𝐶𝑛

2𝑘
, (38)

where we denoted for brevity𝐶 = 𝜀2𝑐𝑟 (1 +𝑜 (1)). Next, we have for
𝑃FA of optimal Warden’s pooler (11):

𝑃FA (𝑥)
(𝑡 )
≍

𝑝𝑛+𝑐𝑛𝑎∑︁
𝑘=𝑝𝑛−𝑐𝑛𝑎

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘𝑄

(
𝑥 − 𝐸0 (𝑘)√︁

𝑉 (𝑘)

)

(𝑎)
≍

𝑝𝑛+𝑐𝑛𝑎∑︁
𝑘=𝑝𝑛−𝑐𝑛𝑎

1√︁
2𝜋𝑛𝑝 (1 − 𝑝)

𝑒
− (𝑘−𝑝𝑛)

2

2𝑛𝑝 (1−𝑝 ) 𝑄

(
𝑥 − 𝐸0 (𝑘)√︁

𝑉 (𝑘)

)

(𝑏)
=

∑︁
|𝑙 | ≤𝑐𝑛𝑎−1/2

1√︁
2𝜋𝑛𝑝 (1 − 𝑝)

𝑒
− 𝑙2

2𝑝 (1−𝑝 ) ×

𝑄
©­­«
𝑥 + 𝐶

2(𝑙/
√
𝑛+𝑝) −

[
𝑙
√
𝑛ℓ (𝑝, 𝑞) − 𝑛𝐷KL (𝑝 | |𝑞)

]
√︃

𝐶
𝑙/
√
𝑛+𝑝

ª®®¬
(39)

The approximation (𝑡) is due to (32) and the fact that 𝑄 (𝑥) ≤ 1,

(𝑎) is from (30), and in (𝑏) we used (38), (13), and 𝑙 = (𝑘 − 𝑝𝑛)/
√
𝑛,

which increments by 1/
√
𝑛.

Next, we consider (39) as a Riemann sum approximation to an

integral. The order of approximation is the length of the interval,

which is 1/
√
𝑛. We add the rest of the entire real line to the inte-

gration (which adds a multiplicative factor of 1 + 𝑜 (1) by (32)) and

obtain

𝑃FA (𝑥) ≍
∫ ∞

−∞

√︄
1

2𝜋𝑝 (1 − 𝑝) exp
(
− 𝑢2

2𝑝 (1 − 𝑝)

)

×𝑄
(
𝑥

√︄
𝑢/
√
𝑛 + 𝑝
𝐶

+ 1

2

√︄
𝐶

𝑢/
√
𝑛 + 𝑝

(40)

−

√︄
𝑢/
√
𝑛 + 𝑝
𝐶

[√
𝑛ℓ (𝑝, 𝑞)𝑢 − 𝑛𝐷KL (𝑝 | |𝑞)

] )
d𝑢 (41)

≍
∫ ∞

−∞

√︄
1

2𝜋𝑝 (1 − 𝑝) exp
(
− 𝑢2

2𝑝 (1 − 𝑝)

)
(42)

×𝑄 ©­«
𝑥

√︂
𝑝

𝜀2𝑐𝑟
+ 1

2

√︄
𝜀2𝑐𝑟

𝑝
−

√︂
𝑝

𝜀2𝑐𝑟

[
𝑐𝑝

𝑝 (1 − 𝑝)𝑢 −
𝑐2𝑝

2𝑝 (1 − 𝑝)

]ª®¬
d𝑢.

(43)

The last approximation is due to (28) and (29), taking the limit

𝑛 → ∞, and swapping the limit and integration, which is per-

missible because the integrand converges uniformly on all closed

intervals. We further rewrite (43)

𝑃FA (𝑥) ≍
∫ ∞

−∞

√︄
1

2𝜋𝑝 (1 − 𝑝) exp
(
− 𝑢2

2𝑝 (1 − 𝑝)

)
𝑄 (𝐷 −𝐴𝑢)d𝑢,

(44)
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where𝐴 =

√︃
𝑝

𝜀2𝑐𝑟

𝑐𝑝
𝑝 (1−𝑝) and𝐷 = 𝑥

√︃
𝑝

𝜀2𝑐𝑟
+ 12

√︃
𝜀2𝑐𝑟
𝑝 +

√︃
𝑝

𝜀2𝑐𝑟

𝑐2𝑝
2𝑝 (1−𝑝) .

Next, we use substitution 𝑢 = (𝐷 − 𝑧)/𝐴 and (33)ś(34)

𝑃FA (𝑥) ≍
∫ ∞

−∞

√︄
1

2𝜋𝐴2𝑝 (1 − 𝑝)
exp

(
− (𝑧 − 𝐷)2
2𝐴2𝑝 (1 − 𝑝)

)
𝑄 (𝑧)d𝑧

= E[𝑄 (𝑌 )] = 𝑄
(

𝜇
√
𝜎2 + 1

)
(45)

with 𝑌 ∼ N(𝜇, 𝜎2), 𝜇 = 𝐷 and 𝜎2 = 𝐴2𝑝 (1 − 𝑝) = 𝑐2𝑝
𝜀2𝑐𝑟 (1−𝑝) . This

allows to finally obtain

𝑃FA (𝑥) ≍ 𝑄
©­­­­«
𝑥
√︃

𝑝

𝜀2𝑐𝑟
+ 1

2

√︃
𝜀2𝑐𝑟
𝑝 +

√︃
𝑝

𝜀2𝑐𝑟

𝑐2𝑝
2𝑝 (1−𝑝)√︂

1 + 𝑐2𝑝
𝜀2𝑐𝑟 (1−𝑝)

ª®®®®¬
= 𝑄

(
𝑥 + 1

2𝑑
2

𝑑

)

(46)

where 𝑑2 = 𝜀2𝑐𝑟
𝑝 +

𝑐2𝑝
𝑝 (1−𝑝) .

For 𝑃D (𝑥) (12), while reminding that 𝐸1 (𝑘) = 𝐿binom (𝑘) +Δ2 (𝑘),
a series of quite similar steps and arguments can be applied by

simply replacing 𝑝 with 𝑝 + 𝑛−1/2𝑐𝑝 (1 + 𝑜 (1)). The Gaussian ap-

proximation to the binomial term will now be shifted by 𝑐𝑝 :

𝑃D (𝑥) ≍
∫ ∞

−∞

√︄
1

2𝜋𝑝 (1 − 𝑝) exp
(
−
(𝑢 − 𝑐𝑝 )2

2𝑝 (1 − 𝑝)

)

×𝑄 ©­«
𝑥

√︂
𝑝

𝜀2𝑐𝑟
− 1

2

√︄
𝜀2𝑐𝑟

𝑝
−

√︂
𝑝

𝜀2𝑐𝑟

[
𝑐𝑝

𝑝 (1 − 𝑝)𝑢 −
𝑐2𝑝

2𝑝 (1 − 𝑝)

]ª®¬
d𝑢

=

∫ ∞

−∞

√︄
1

2𝜋𝑝 (1 − 𝑝) exp
(
− 𝑢2

2𝑝 (1 − 𝑝)

)
𝑄 (𝐷 −𝐴𝑢)d𝑢 (47)

which can be further rewritten using the same substitution 𝑢 =

(𝐷 − 𝑧)/𝐴 as

𝑃D (𝑥) ≍
∫ ∞

−∞

√︄
1

2𝜋𝐴2𝑝 (1 − 𝑝)
exp

(
−
(𝐷 − 𝑧 − 𝑐𝑝𝐴)2

2𝐴2𝑝 (1 − 𝑝)

)
𝑄 (𝑧)d𝑧

= E[𝑄 (𝑌 )] = 𝑄
(

𝜇
√
𝜎2 + 1

)
(48)

with 𝑌 ∼ N(𝜇, 𝜎2), 𝜇 = 𝐷 − 𝑐𝑝𝐴 and 𝜎2 = 𝐴2𝑝 (1 − 𝑝) = 𝑐2𝑝
𝜀2𝑐𝑟 (1−𝑝) ,

which gives

𝑃D (𝑥) ≍ 𝑄
(
𝑥 − 1

2𝑑
2

𝑑

)
. (49)

In summary, asymptotically the ROC of Warden’s optimal pooler

is Gaussian 𝑃D (𝑃FA) = 𝑄
(
𝑄−1 (𝑃FA) − 𝑑

)
.

The same steps as above can be followed to obtain the equivalent

result for the uniform sender,𝑑2
uniform

= (𝑝𝜀2+1−𝑝)𝑐𝑟 +
𝑐2𝑝

𝑝 (1−𝑝) ,and
potentially for any bivalued sender once adopting a policy for

adjusting sender’s rates 𝛼𝜀 and 𝛼1 with 𝑛.
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