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Abstract. Most practical stegosystems for digital media work by apply-
ing a mutually independent embedding operation to each element of the
cover. For such stegosystems, the Fisher information w.r.t. the change
rate is a perfect security descriptor equivalent to KL divergence between
cover and stego images. Under the assumption of Markov covers, we de-
rive a closed-form expression for the Fisher information and show how
it can be used for comparing stegosystems and optimizing their perfor-
mance. In particular, using an analytic cover model fit to experimental
data obtained from a large number of natural images, we prove that
the £1 embedding operation is asymptotically optimal among all mutu-
ally independent embedding operations that modify cover elements by
at most 1.

1 Introduction

The key concept in essentially all communication schemes is the channel capac-
ity defined as the amount of information, or largest payload, that can be safely
transmitted over the channel. So far, the capacity of steganographic channels
was studied mainly for the case of perfectly secure stegosystems, for which the
number of bits that can be safely transmitted in an n-element cover (the stegano-
graphic capacity) scales linearly w.r.t. n. In this sense, the communication rate
(payload per cover element) is non-vanishing [1I2I3]. A crucial assumption in
these works is the full knowledge of the cover source or the detector. In prac-
tice, when dealing with empirical cover sources, such as digital media files, it
is unlikely that the communicating parties (Alice and Bob) will have the same
knowledge as the Warden. In fact, history teaches us that no matter how sophis-
ticated Alice and Bob are in creating their steganographic scheme that embeds in
empirical covers, it is relatively easy for the Warden to identify statistics violated
by the embedding and thus mount an attack. Consequently, practical stegosys-
tems are likely to exhibit positive KL divergence between cover and stego objects
in some appropriate cover model. We call such systems imperfect.

For imperfect stegosystems, the communication rate is not a good descriptor
of the channel because it approaches zero with increasing n. Alice, however, still

! In this paper, we measure “capacity” as the total number of bits and instead use the
term “communication rate” for capacity expressed per cover element.
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needs to know what level of risk she is exposing herself to when sending a message
to Bob. It is critical for her to know how much information she can send using
her stegosystem in an n-element cover while keeping the KL divergence between
cover and stego objects below some chosen ¢. It was recently shown that under
fairly general assumptions, the amount of information that she can hide scales
as ry/n [4], with r constant. This Square Root Law of imperfect steganography
(SRL) was experimentally verified for various embedding algorithms in both
spatial and DCT domains [5]. The SRL was also proved by Ker [6] for the case
of batch steganography.

In this paper, we propose to use the proportionality constant r from the SRL
as a more refined measure of steganographic capacity of imperfect stegosystems.
By the form of the law, the constant r, for which we coin the term the root
rate, essentially expresses the capacity per square root of cover size. We derive a
closed form expression for the root rate under the assumption that covers form
a Markov chain and embedding is realized by applying a sequence of indepen-
dent embedding operations to individual cover elements. The root rate depends
on the Fisher information rate w.r.t. the the change rate, which was shown to
be a perfect security descriptor equivalent to the KL divergence between distri-
butions of cover and stego objects [7]. Expressing the Fisher information rate
analytically as a quadratic form allows us to evaluate, compare, and optimize
security of stegosystems. To this end, we derive an analytic cover model from
a large database of natural images represented in the spatial domain and show
that the =1 embedding operation is asymptotically optimal among all mutually
independent embedding operations that modify cover elements by at most 1.
Finally, using the Fisher information rate, we compare security of several prac-
tical stegosystems, including LSB embedding and £1 embedding. Our findings
appear to be consistent with results previously obtained experimentally using
steganalyzers and are in good agreement with the recent experimental study
reported in [8].

This paper is structured as follows. In the next section, we introduce notation
and formulate our assumptions. In Section [B] we introduce the concept of the
root rate as a measure of steganographic capacity of imperfect stegosystems. At
the same time, we derive a closed form expression for the Fisher information
rate on which the root rate depends. Section [ contains the theoretical founda-
tion for comparing stegosystems and for maximizing the root rate with respect
to the embedding operation for a fixed cover source. In Section Bl we present
comparison of several known embedding operations for three spatial domain an-
alytic cover models derived from databases of raw, JPEG, and scanned images.
Also, we prove that ternary +1 embedding has the highest root rate among all
stegosystems that modify cover elements by at most 1. The paper is concluded
in Section [6l

2 Assumptions

The results reached in this paper will be derived from three basic assumptions.
The first assumption concerns the impact of embedding. We postulate that the
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stego object is obtained by applying a mutually independent embedding opera-
tion to each cover element. This type of embedding can be found in majority of
practical embedding methods (see, e.g., [9] and the references therein). The sec-
ond assumption is our model of covers. We require the individual cover elements
to form a first-order stationary Markov chain because this model is analytically
tractable while allowing study of more realistic cover sources with memory. Fi-
nally, the third assumption essentially states that the resulting stegosystem is
imperfect.

Throughout the paper, we use A = (a;;) to denote a matrix with elements a;;,
calligraphic font (') to denote sets, and capital letters (X, Y) to denote random
variables, both vector and scalar. If y is a vector with componentsy = (y1,...,¥yn),
yL denotes the subsequence y. = (yx,...,u). fY = (¥i,...,Y,) is a random
vector with underlying probability distribution P, then P(Ykl = y}c) or simply
P(y!) denotes the marginal probability P(Y = vk, Yet1 = Ykt1,---, Y1 = Y1)

An n-element cover source will be represented using a random variable X7 £
(X1,...,X,) distributed according to some general distribution P(™ over X",
X £ {1,...,N}. A specific cover object is a realization of X7* and will be denoted
with the corresponding lower case letter z7 £ (x1,...,1,) € X™. A stegosystem
is a triple S, = (X7, Emb(™ Ext(™)) consisting of the random variable de-
scribing the cover source, embedding mapping Emb(™ | and extraction mapping
Ext™ . The embedding mapping Emb(™ applied to X7 induces another random
variable Y{* £ (Y1,...,Y,) with probability distribution Q(ﬁn) over X™. Specific
realizations of Y* are called stego objects and will be denoted ¥} £ (y1,. .., Yn)-
Here, § > 0 is a scalar parameter of embedding whose meaning will be explained
shortly.

The specific details of the embedding (and extraction) mappings are immaterial
for our study. We only need to postulate the probabilistic impact of embedding.

Assumption 1. [Mutually independent embedding] The embedding algorithm
modifies every cover element Xy independently to a corresponding element of the
stego object Yy, with probability

1+ ﬂcii Zf’L = j
Bcij otherwise,

Qs(Ye = j| Xk = i) £ bi;(8) = { (1)

for some constants c;; > 0 for i # j. Note that because Zjvzl bi; =1, we must
have c;; = ,Z#i cij for each i € X. Also note that we can find sufficiently
small By such that bi; () > 0 for B € [0,50] and all i € X. The embedding and
extraction mappings also impose a bound on the range of 8, B € [0, By ax]-

The matrix C £ (c;;) reflects the inner workings of the embedding algorithm,
while the parameter [ captures the extent of embedding changes. Due to the
fact that Pr(Yy # Xji) = —0c;i, we can think of 3 as a parameter controlling
the relative number of changes or the change rate. Because the matrix By =
(bi;(8)) does not depend on k € {1,...,n} or the history of embedding changes,
one can say that the stego object is obtained from the cover by applying to



34 T. Filler and J. Fridrich
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Fig. 1. Examples of several embedding methods in the form of a functional matrix B.
The last matrix represents an embedding method that uses LSB embedding to embed
in the first two cover values and ternary +1 embedding in the last four values.

each cover element a Mutually Independent embedding operation (we speak
of MI embedding). The independence of embedding modifications implies that
the conditional probability of the stego object given the cover object can be
factorized, i.e., le)(YMXf) = [IiL, @s(Yi|X;). For simplicity, we omit the
index  from the functional matrix Bg.

Many embedding algorithms across different domains use MI embedding. Rep-
resentative examples are LSB embedding, 1 embedding, stochastic modulation,
Jsteg, MMx, and various versions of the F5 algorithm [9]. Examples of matrix B
for four selected embedding methods are shown in Figure [l The last matrix B
in this figure represents a practical method that merges ternary £1 embedding
with LSB embedding.

Next, we formulate our assumption about the cover source.

Assumption 2. [Markov cover source]. We assume that the cover source X'
is a first-order stationary Markov Chain (MC) over X, to which we will often
refer as just Markov chain for brevity. This source is completely described by
its stochastic transition probability matriz A = (a;;) € RN*N a;; = Pr(X; =
§|Xk—1 =1), and by the initial distribution Pr(Xy). The probability distribution
induced by the MC source generating n-element cover objects satisfies P (X7 =
) = POO(XP = 2 Vag, .., where PY(X1) is the initial distribution.
We further assume that the transition probability matriz of the cover source
satisfies a;; > 0 > 0, for some § and thus the MC is irreducible. The stationary
distribution of the MC source is a vector ® = (my,...,mN) satisfying TA = 7.
In this paper, we will always assume that the initial distribution P(l)(Xl) =,
which implies P (X}y) = m for every n and k. This assumption simplifies the
analysis without loss of generality because the marginal probabilities P (X},)
converge to m with exponential rate w.r.t. k (see Doob [10], equation (2.2) on
page 173). In other words, MCs “forget” their initial distribution with exponential
rate.
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Under the above assumption and the class of MI embedding, the source of stego
images no longer exhibits the Markov property and forms a Hidden Markov
Chaind (HMC) instead [12]. The HMC model is described by its hidden states
(cover elements) and output transition probabilities (MI embedding). Hidden
states are described by the cover MC, while the output probability transition
matrix B is taken from the definition of MI embedding.

Unless stated otherwise, in the rest of this paper an) denotes the probability
measure induced by the HMC source embedded with parameter [ into n-element
MC cover objects. By the stationarity of the MC source, the marginal probabil-
ities P(")(XF+1) = P?)(X?) and le) (V) = le) (Y?) for all k. Sometimes,
we will omit the number of elements, n, and denote as P and (3 the probability
distributions over cover and stego images, respectively.

The third assumption we formulate concerns the entire stegosystem S,. In
this work, we only deal with imperfect stegosystems.

Assumption 3. [FI condition|. We assume the stegosystem S,, = (X7, Emb(™,
Ext™) to be imperfect, meaning that it is not perfectly secure in the sense of

Cachin [13], i.e., the KL divergence DKL(P(”)HQ(;)) > 0 for 8 > 0. For our
special case of Markov cover sources X' and MI embedding Emb™ | this as-
sumption can be equivalently stated in two different forms:

1. The pair (P, Q(;)) does not satisfy the so called Fisher Information con-
dition,

d
viex? (PO(Xi=y})>0) = (%Qgﬂ (W35 =0). @
2. There exists a pair of states (i,j) such that

P(X? = (i,5)) # Qa(Y2 = (i,5)) for all 0. 3)

For proof of these statements, see [7, Cor. 7].

Finally, we would like to stress that Assumptions 1-3 are not overly restric-
tive and will likely be satisfied for all practical steganographic schemes in some
appropriate representation of the cover. For example, a stegosystem that pre-
serves the Markov model is likely to be detectable by computing higher-order
dependencies among pixels. Thus, the stegosystem will become imperfect when
representing the cover as pairs or groups of pixels/coefficients or some other
quantities computed from the cover.

3 Capacity of Imperfect Stegosystems

In this section, we introduce the concept of root rate as a measure of capac-
ity of imperfect stegosystems. We start by explaining the relationship between

% In contrast to [I1], we opted not to approximate stego objects by Markov chain as
it is not entirely clear what consequences this simplifying step has.
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steganographic capacity of stegosystems satisfying Assumptions 1-3 and the
Fisher information w.r.t. the parameter g
2
. 4
) ] 0

Then in Section B.2] we derive its closed form expression and write it in terms
of the expected relative payload « instead of parameter 0 as this form is more
informative for the steganographer.

1,(0) = Ep (%mczg")(y?)

3.1 Fisher Information in Steganography

Fisher information is a fundamental quantity that frequently appears in the-
oretical steganography and in general in signal detection and estimation. For
example, the Cramer-Rao lower bound states that the reciprocal of Fisher in-
formation, 1/1,(0), is the lower bound on the variance of unbiased estimators
of § (quantitative steganalyzers). Fisher information also appears in the lead-

ing term of Taylor expansion of the KL divergence d,,(3) = DKL(P(")HQE;L)) =
(3%1,(0)/(2In2) + O(B?), where

Dir(PPIQE) 2 3 PO oz, L)
TpEX™ Qﬁ (1)

From here, we see that zero KL divergence implies zero Fisher information. Al-
though the opposite is not true in general, it holds for all stegosystems with MI
embedding and arbitrary cover model [7]. For such stegosystems, Fisher informa-
tion I,,(0) represents a perfect security descriptor equivalent to the KL divergence.
Fisher information was also proposed for benchmarking steganalyzers [14].

The relationship between the Fisher information rate and steganographic ca-
pacity of stegosystems satisfying Assumptions 1-3 was established in [4]. It was
essentially shown that such stegosystems are subject to the Square Root Law,
which means that payloads that grow faster than /n, i.e., lim, o B(n)n/y/n =
o0, can be detected arbitrarily accurately, whereas payloads that grow slower
than /7, i.e., B(n)n//n < K < oo, lead to e-secure stegosystems, dy,(3) < ef
This result tells us that the payload that can be securely transmitted over the
steganographic channel scales as ry/n. Consequently, the sequence of embed-
ding parameters 3(n) must approach zero for e-secure systems and thus the
communication rate tends to zero. Due to this fact, it makes sense to evaluate
steganographic capacity in the limit of 5(n) — 0.

3 Here, we assumed that there exists a linear relationship between 3(n) and the relative
payload «(n) (e.g., the stegosystem does not employ matrix embedding). Indeed,
application of matrix embedding does not invalidate our arguments as a(n) differs
from 3(n) only by a multiplicative factor bounded by log n.
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3.2 Root Rate

The problem of steganalysis can be formulated as the following hypothesis testing
problem

H0:6:0
Hy:8>0. (5)

We show that for small (and known) § and large n, the likelihood ratio test with

test statistic
1

1 n n
=T (X) = —=In (Q)(0/ P (X)), (©)
is a mean-shifted Gauss-Gauss problemE This property, usually called the Local
Asymptotic Normality (LAN) of the detector, allows us to quantify and correctly
compare security of embedding algorithms operating on the same MC cover
model for small values of .

In this case, the detector performance can be completely described by the
deflection coefficient d?, which parametrizes the ROC curve as it binds the prob-
ability of detection, Pp, as a function of the false alarm probability, Pr 4,

Pp =Q(Q 7 (Pra) — Vd2).

Here, Q(z) = 1 — &(x) and P(x) is the cdf of a standard normal variable
N(0,1). Large value of the deflection coefficient implies better detection or
weaker steganography.

First, we state the LAN property for the HMC model w.r.t. the embedding
parameter 3 and then extend this result with respect to the relative payload c.

Theorem 1. [LAN of the LLRT|. Under Assumptions 1-3, the likelihood ratio
() satisfies the local asymptotic normality (LAN), i.e., under both hypotheses
and for values of 3 up to order 32

\/E(Tﬁ(n)/n + 3°1/2) —%, N(0, 82T) under Hy (7)
Va(TSV /n— 821/2) % N(0, 8°I) under Hy, (8)
where I is the Fisher information rate, I = lim, o %In(O), and 2 is the con-

vergence in distribution. The detection performance is thus completely described
by the deflection coefficient

o (WABL/2+ VRsL/2)?
B

=nB3?I.

* In hypothesis testing, the problem of testing N(uo,0?) vs. N(u1,0?) is called the
mean-shifted Gauss-Gauss problem and its detection performance is completely de-
scribed by the deflection coefficient d* = (uo — p1)?/o? [15, Chapter 3].
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Proof. Due to limited space, we only provide a brief outline of the proof. The
Gaussianity of the test statistic follows from the Central Limit Theorem (CLT)
due to the fact that the test statistic is close to being i.i.d. Formal proof of this
uses exponential forgetting of the prediction filter [I6, Lemma 9] and follows
similar steps as the proof of the CLT for Markov chains [I0]. The mean and
variance of the likelihood ratio (@) is obtained by expanding (@) in Taylor series
w.r.t. § and realizing that the leading term is the quadratic term containing the
Fisher information rate.

We now reformulate the conclusion of the theorem in terms of the payload rather
than the parameter 5. Matrix embedding (syndrome coding) employed by the
stegosystem may introduce a non-linear relationship 8 = f(a) between both
quantities. In general, the payload embedded at each cover element may depend
on its state i € X (e.g., see the last two matrices in Figure[l)). Thus, the expected
value of the relative payload that can be embedded in each cover is a(8) =
> icx mii(B3), where a;(3) stands for the number of bits that can be embedded
into state ¢ € X and ; is the stationary distribution of the MC. The value of
for which « is maximal will be denoted as Byrax

Brax = argmguxa(ﬁ).

For example, for ternary +1 embedding Sypax = 2/3 and «;(Bmax) = logs 3,
while for binary +1 embedding Sapax = 1/2 and a;(Bprax) = 1 (see Figure[ll
for the corresponding matrices). Notice that the matrix C is the same for both
embedding methods. The only formal difference is the range of the parameter
(. We also remark that unless all «; are the same, the maximal payload will
depend on the distribution of individual states ;.

To simplify our arguments, we assume a linear relationship between § and «
(e.g., we do not consider in this paper the effects of matrix embedding). There-
fore, we can write

B = fla) = 2uAx,, 9)
QAMAX
where a € [0,apax] and aprax = a(Baax) denotes the average number of
bits that can be embedded into cover element while embedding with 0 = Byrax
(maximum change rate).

From (@), the deflection coefficient can be expressed in terms of the relative

payload « by substituting 8 = f(«) from (@) into Qg

2
d* = no? (M) 1. (10)
QMAX

In practice, Alice can control statistical detectability by bounding d? < e for
some fixed ¢, obtaining thus an upper bound on the total number of bits (pay-
load) an that can be safely embedded (this requires rearranging the terms in

@)
s S o
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In analogy to the communication rate, it is natural to define the root rate

A OMAX

VIBrax

r (12)

as the quantity that measures steganographic security of imperfect stegosystems
in bits per square root of cover size per square root of KL divergence. We use
the root rate for comparing stegosystems with a MC cover model.

In the next theorem, proved in the appendix, we establish the existence of the
main component of the root rate, the Fisher information rate I, and express it
in a closed form.

Theorem 2. |Fisher information rate|. Let A = (a;;) define the MC cover model
and B, defined by matriz C = (c;5), capture the embedding algorithm. Then, the
normalized Fisher information I,(0)/n approaches a finite limit I as n — oo.
This limit can be written as I = cTFc, where c is obtained by arranging C into
a column vector of size N? with elements cij The matriz F of size N? x N?
is defined only in terms of matrix A and does not depend on the embedding
algorithm. The elements of matriz F are

f(i,j),(k,l) = [] = l]V(l,j, k) - U(Zvjv k7l)7 (13)

where by the Tverson notation [j =] is one if j =1 and zero otherwise and

i (e i2)(503)

2EX z] 2€EX Iz
.. Ajk ag;
j
Ui, j, k, 1) = m | air, — ag—— | + 7k | ari — arj— |-
ajl alj

Moreover, |I,(0)/n—1I| < C/n for some constant C'. This constant depends only
on the elements of matriz A and not on the embedding algorithm. The quadratic
form I(c) = cTFc is semidefinite, in general.

By inspecting the proof of the theorem, the matrix F can be seen as the Fisher
information rate matrix w.r.t. the parameters {b;;|1 <1, j < N}. It describes the
natural sensitivity of the cover source to MI embedding. The quadratic form then
combines these sensitivities with coeflicients given by the specific embedding
method and allows us to decompose the intrinsic detectability caused by the
cover source from the detectability caused by the embedding algorithm.

Corollary 1. For the special case when the MC degenerates to an i.i.d. cover
source with distribution P = w, the Fisher information rate simplifies to

T Tk
1= E Cij —Ckj-
LA Uy

i,7,k€X

5 The order of elements in C is immaterial as far as the same ordering is used for pairs
(4,7) and (k,!) in matrix F.



40 T. Filler and J. Fridrich

4 Maximizing the Root Rate

In the previous section, we established that the steganographic capacity of imper-
fect stegosystems should be measured as the root rate (I2) defined as the payload
per square root of the cover size and per square root of KL divergence. The most
important component of the root rate is the stegosystem’s Fisher information
rate, for which an analytic form was derived in Theorem [2l The steganographer
is interested in designing stegosystems (finding C) with the highest possible root
rate. This can be achieved by minimizing the Fisher information rate or by em-
bedding symbols from a larger alphabet, i.e., increasing the ratio apax/Bamax-
In this section, we describe two general strategies for maximizing the root rate
that are applicable to practical stegosystems. In Section B, we draw conclusions
from experiments when these strategies are applied to real cover sources formed
by digital images.

Before proceedings with further arguments, we point out that the highest
root rate is obviously obtained when the Fisher information rate is zero, I = 0.
This can happen for non-trivial embedding (C # 0) in certain sources because
the Fisher information rate is a semidefinite quadratic form. Such stegosystems,
however, would be perfectly secure and thus by Assumption 3 are excluded from
our consideration [d

The number of bits, a;, that can be embedded at each state i € X is bounded
by the entropy of the ith row of B =1+ SC, H(B;,). Thus, in the most general
setting, we wish to maximize the root rate

S miH (Bie(Brmax)) 1

Bmax VI

w.r.t. matrix C. The nonlinear objective function makes the analysis rather com-
plicated and the result may depend on the distribution of individual states 7.
Moreover, even if we knew the optimal solution, care needs to be taken in inter-
preting such results, because a practical algorithm allowing us to communicate
the entropy of the additive noise may not be available. We are only aware of
a few practical embedding algorithms that communicate the maximal amount
of information (LSB embedding with binary symbols and +1 embedding with
ternary symbols). In practice, stochastic modulation [I7] can be used in some
cases to embed information by adding noise with a specific pmf (matrix C), but
the specific algorithms described in [17] are suboptimal.

In the rest of this section, we present two different approaches how to optimize
the embedding algorithm under different settings that are practically realizable.

4.1 Optimization by Convex Combination of Known Methods

One simple and practical approach to optimize the embedding method is ob-
tained by combining existing stegosystems S and S). Suppose Alice and

% An example of such a stegosystem is LSB embedding in i.i.d. covers with ma; = mai11
for all .
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Bob embed a portion of the message into An elements, 0 < A < 1, using S
and use the remaining (1 — A)n elements to embed the rest of the message using
S If both parties select the elements pseudo-randomly based on a stego key,
the impact on a single cover element follows a distribution obtained as a con-
vex combination of the noise pmfs of both methods. Note that the methods are
allowed to embed a different number of bits per cover element since Bob knows
which symbol to extract from each part of the stego object. Let S represent
the ith embedding method with matrix C), or its vector representation c(¥,
with ratio p() = ag\?AX/ﬂg\?AX for ¢ € {1,2}. The root rate () of the method
obtained by the above approach (convex embedding) with parameter A can be
written as

AW + (1= X)p?
VOe® + (1= X)ec@)TFAc@ + (1 — \)c@)
AW+ (1= N)p®@

= : (14)
VI (1= N)2T@ 4 201 — N5

r(A) =

where 1() is the Fisher information rate of S and 112 = (c(l))TIFc(Q). Here,

we used the symmetry of F to write 1(12) = 721,

4.2 Minimizing the Fisher Information Rate

In an alternative setup, we deal with the problem of optimizing the shape of the
additive noise pmf under the assumption that the number of bits, a;, embedded
at each state ¢ € X is constant. For example, we may wish to determine the
optimal pmf that would allow us to communicate 1 bit per element (a; = 1,
Vi € X) by changing each cover element by at most 1. In this problem, the ratio
anmax/Buax, as well as the cover model (matrix A), are fixed and known. The
task is to minimize the Fisher information rate I.
We formulate our optimization problem by restricting the form of the matrix
C = (¢45), or its vector representation ¢ = (¢;;) € RN**1t0 the following linear
parametric form
c=Dv+e, (15)

where D = (d;;) is a full-rank real matrix of size N% x k, e is a real column vector
of size N2, and v = (vy,...,v;)7 is a k-dimensional column vector. We assume
v € V, where V is bounded by a set of linear inequalitiesﬁl and the constraint
Zj ci; = 0 for all i € {1,..., N}. In other words, we decompose the matrix C
into k real parameters v;, ¢ € {1,...,k}. The following example shows one such
representation for a stegosystem whose embedding changes are at most 1.

Ezample 1. [Tridiagonal embedding]. We set ¢;; = —1,¢;5—1 = vi—1,and ¢; ;41 =
1—wi_y fori € {2,...,N — 1} (and suitably defined at the boundaries). This
allows us to model +1 embedding, LSB embedding, and all possible MI embed-
ding methods that modify every element by at most 1. By setting ¢;; = —1 for

7 E.g., we must have B > 0.
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all 7, we constrain ourselves to stegosystems that embed the same payload into
every state ¢ € X for all 8 > 0. This model has k = N — 2 parameters and the
set V is formed by v; € [0,1], j € {1,...,k}.

Our task is to minimize the Fisher information rate for embedding methods
given by ([H). The function I(v) = (Dv + e)TF(Dv + €) can attain its minimum
either at a point with a zero gradientﬁ (a critical point) or on the boundary of V.
We now derive a set of linear equations for the set of all possible critical points.
This approach will be used in Section Bl to prove that ternary £1 embedding
is asymptotically optimal within the class of tridiagonal embedding in spatial
domain.

For our parametrization, the gradient w.r.t. every parameter v; can be ex-
pressed as

0 0

a—UjI(v) = 8_1)]-(Dv +¢e)TF(Dv + ¢) = 2(D,;) ' F(Dv + e),
where D, ; is the jth column of matrix ID. Because every possible candidate vg
for the optimal parameters must satisfy (0/0v;)I(v)|v=v, = O for every j €
{1,...,k}, all critical points are solutions of the following linear system

DTFDv = —DTFe. (16)

If this system has a unique solution vg € V, then vy corresponds to matrix C
achieving the global minimum of the Fisher information rate, which corresponds
to the best MI embedding method w.r.t. V and a given MC cover source.

5 Experiments

In the previous section, we outlined two strategies for maximizing the root
rate for practical stegosystems. This section presents specific results when these
strategies are applied to stegosystems operating on 8-bit gray-scale images repre-
sented in the spatial domain. Although images are two dimensional objects with
spatial dependencies in both directions, we represent them in a row-wise fashion
as a first-order Markov Chain over X = {0,...,255}. The MC model represents
the first and simplest step of capturing pixel dependencies while still retaining
the important advantage of being analytically tractable. Then, we adopt a para-
metric model for the transition probability matrix of this Markov cover source
and show that it is a good fit for the empirical transition probability matrix A
estimated from a large number of natural images. We use the analytic model to
evaluate the root rate (I2) of several stegosystems obtained by a convex combina-
tions of known methods. Finally, we show that the optimal embedding algorithm
that modifies cover elements by at most 1 is very close to 1 embedding.

In principle, in practice we could calculate the Fisher information rate using
equation (I3) with an empirical matrix A estimated from a large number of

8 Note that the semidefiniteness of F guarantees that the extremum must be a
minimum.
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images. However, this approach may give misleading results because ([I3)) is quite
sensitive to small perturbations of a;; with a small value (observe that I = 400
if a;; = 0). We do not expect this to be an issue in practice since rare transitions
between distant states are probable but content dependent, which makes them
difficult to be utilized for steganalysis. Because small values of a;; can not be
accurately estimated in practice, we represent the matrix A with the following
parametric model .

aij = Ze—(lz—ﬂ/f)”7 (17)
where Z; = 327% ¢~(i=il/")" is the normalization constant. The parameter -y
controls the shape of the distribution, whereas 7 controls its “width.” The model
parameters were found in the logarithmic domain using the least square fit be-
tween (I7) and its empirical estimate. To validate this model, we carried out
the least square fit separately for three image databases: never compressed im-
ages taken by several digital camerasd (CAMRAW), digital scang’l (NRCS),
and decompressed JPEG imaged!] (NRCS-JPEG). Figure [2 shows the compar-
ison between the empirical matrix A estimated from the CAMRAW database
and the corresponding fit. Although this model cannot capture some important
macroscopic properties of natural images, such as pixel saturations, it remains
analytically tractable and is valid for many natural images.

CAMRAW - log a;; log ai27,;
0 0 ‘
data
—— model
75 | - .
—10 |- |
! ! !
0 127 255
255
0 255 J

Fig. 2. Left: plot of the empirical matrix A estimated from CAMRAW database in
log domain. Right: comparison of the 128th row of matrix A estimated from the same
database with the analytic model ([IT).

The left part of FigureBlshows the root rate ([I4), r(\), for a convex combina-
tion of LSB and +1 embedding, A € [0, 1], for different image sources. The higher

 Expanded version of CAMERA RAW database from [I8] with 4547 8-bit images.

10 Contains 2375 raw scans of negatives coming from the USDA Natural Resources
Conservation Service (http://photogallery.nrcs.usda.gov).

' Images from NRCS database compressed with JPEG quality factor 70.
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Convex combin. of LSB and +1 Optimal tridiagonal embedding v
r(A) v;

—

- - - NRCS-JPEG 0.8
77777 CAMRAW
2 0.6
+1 emb.
0.4
1 ”:/,/” 0.2
0 - LSB A 1-+1 1 i 254

Fig. 3. Left: the root rate 7(\) = awmax/(BraxVI) of a convex combination of
LSB and +1 embedding for different image sources. Right: optimal parameters v =
(v1,...,v254) of MI embedding (I5]) minimizing the Fisher information rate while mod-
ifying cover elements by at most 1. The difference between +1 embedding and optimal
MI embedding is due to boundary effects that vanish as N — oo.

the root rate r(\), the better the stegosystem. The results are consistent with the
thesis that +1 embedding is less detectable than LSB embedding. Similarly, the
capacity of stegosystems with covers from NRCS (scans) is believed to be higher
than the capacity of stegosystem with decompressed JPEGs or images from dig-
ital cameras. This fact is in agreement with our result obtained for all values of
the convex combination of LSB and +1 embedding and we attribute it to the
fact that scans contain a higher level of noise that masks embedding changes. In
contradiction with our expectations, decompressed JPEGs from NRCS-JPEG
have a higher root rate than raw images from digital cameras (CAMRAW).
This phenomenon is probably caused by the simplicity of the MC model, which
fails to capture JPEG artifacts because they span across larger distances than
neighboring pixels.

We now use the methodology described in Section and maximize the root
rate with respect to stegosystems that modify each cover element by at most 1.
We do so for the cover model fit obtained from the NRCS database. Assuming the
embedding operation is binary, it can embed one bit per cover element. Thus, it is
sufficient to find the MI embedding that attains the minimum Fisher information
rate. We use the parametrization from Example [[] and solve the system of equa-
tions (I6)). This system has only one solution v = (v1,...,ve54) € V = [0, 1]?%*
and thus it represents MI embedding with minimum Fisher information rate.
This solution is shown in the right part of Figure [ along with the representa-
tion of the +1 embedding operation. The optimal MI embedding differs from
+1 embedding only at the boundary of the dynamic range. This is due to the
finite number of states in the MC model. We experimentally verified that the
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relative number of states with |v; — 0.5 > ¢ tends to zero for a range of § > 0 as
N — oo for fixed parameters of the analytic model [ Thus, the boundary effect
is negligible for large N. This suggests that the loss in capacity when using £1
embedding algorithm is negligible for large N or, in other words, £1 embedding
is asymptotically optimal.

6 Conclusion

In sharp contrast with the well established fact that the steganographic capacity
of perfectly secure stegosystemns increases linearly with the number of cover ele-
ments, n, a recently derived result states that steganographic capacity of a quite
wide class of imperfect stegosystems is only proportional to v/n. The communi-
cation rate of imperfect stegosystems is thus non-informative because it tends
to zero with n. Instead, an appropriate measure of capacity is the constant of
proportionality in front of v/n, for which we coin the term the root rate whose
unit is bit per square root of cover size per square root of KL divergence. The
root rate is shown to be inversely proportional to the square root of the Fisher
information rate of the stegosystem. Adopting a Markov model for the cover
source, we derive an analytic formula for the root rate with Fisher information
rate expressible as a quadratic form defined by the cover transition probability
matrix evaluated at a vector fully determined by the embedding operation. This
analytic form is important as it enables us to compare the capacity of imperfect
stegosystems as well as optimize their embedding operation (maximize the root
rate). We fit a parametric model through the empirical transition probability
matrix for neighboring pixels of real images and use this model to compute and
compare the root rate of known steganographic schemes and their convex com-
binations. In agreement with results previously established experimentally using
blind steganalyzers, our analysis indicates that ternary +1 embedding is more
secure than LSB embedding and it is also optimal among all embedding methods
that modify pixels by at most 1. Furthermore, by analyzing image databases of
raw images from different sources, we established that the root rate is larger
for images with higher noise level as is to be expected. Among the surprising
results of our effort, we point out the fact that the root rate for £1 embedding is
only about twice larger than for LSB embedding, which contrasts with the fact
that current best steganalyzers for LSB embedding are markedly more accurate
than the best steganalyzers of +£1 embedding. This hints at the existence of
significantly more accurate detectors of +1 embedding that are yet to be found.
The results presented here offer several interesting research directions worth
pursuing in the future. In particular, we may attempt to determine the embed-
ding operation that maximizes the root rate for a given Markov cover source for a
wider class of matrices C. Additionally, we intend to extend our results to JPEG
images represented in the DCT domain using appropriate analytic models.

12 We believe the same to be true for all § > 0.
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Appendix

Proof of Theorem 2k Here, we only present the main idea of the proof, leaving
all technical details to the report [I9]. The decomposition of the sequence I,,(0)/n
to a quadratic form and its properties can be obtained directly from the definition
of Fisher information

82
0 = 22 a0 -
In2 9? 0b;; Oby
:_Zznln2 [<8b ibr1 In@s(¥s )B—H)] (85 5—0) (8—ﬁ’ﬁ—o)'
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2g(Y]" i k1) e e

The derivatives of the log-likelihood are evaluated at B = I because B(3) =
I+ AC and § = 0. By using Qs(u7) = Y peern P(a7)Qa(yple7), the ran-
dom variable ¢g(Y7*, 4,7, k,1) does not depend on the embedding method. This
is because the derivatives are evaluated at B = I and thus only contain the
elements of the cover source transition matrix A. The proof of the convergence
of —%Ep lg(Y{",4,5,k,1)] to fi ),k and its closed form is more involved and is
presented in the report [I9]. The semidefinitness of the quadratic form follows
from semidefiniteness of the Fisher information matrix F. It is not positively
definite because for an i.i.d. cover source all rows of matrix F coincide and are
thus linearly dependent.
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