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Abstract—In batch steganography, the sender spreads the
secret payload among multiple cover images forming a bag. The
question investigated in this paper is how many and what kind
of images the sender should select for her bag. We show that
by forming bags with a bias towards selecting images that are
more difficult to steganalyze, the sender can either lower the
probability of being detected or save on bandwidth by sending
a smaller bag. These improvements can be quite substantial.
Our study begins with theoretical reasoning within a suitably
simplified model. The findings are confirmed on experiments
with real images and modern steganographic and steganalysis
techniques.

Index Terms—Batch steganography, pooled steganalysis,
source biasing, forming bags, bias gain, bandwidth savings

I. INTRODUCTION

As introduced by Ker [1], in batch steganography the sender
spreads her secret payload among multiple covers (a bag) to
decrease the chances of being detected by the Warden and /
or to communicate a large message that would not fit in a
single cover. The Warden pools evidence from the same bag
to detect the use of steganography, a process known as pooled
steganalysis.

Batch steganography and pooled steganalysis (BSPS) have
been studied extensively in the past [2], [3], [4], [5], [6],
[71, [8], [9], [10]. A significant portion of the work focuses
on how to allocate chunks of the secret payload to covers
in the bag to minimize statistical detectability [5], [1], [3],
[6]. Comparatively less is available for the sender on how
to form the bags themselves. The authors of [11], [9], [12]
report that a sender who wishes to maintain a fixed secret rate
(relative payload per bag) can decrease statistical detectability
by selecting a bag whose size is neither too large nor too small.
The gain in security obtained this way is called the bag gain.
The authors of [6], [10] describe a method for selecting the
bag size adaptively (AdaBIM) for Gaussian embedding and
the image merging sender [5].

This present work is concerned with the following practical
question. Given a secret message of fixed length, how should
Alice form her bag of cover images for batch steganography?
We emphasize that the aforementioned prior art do not directly
address this question as most operate under the working as-
sumption that Alice wants to maintain a fixed communication
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rate (e.g., in bits per pixel). However, maintaining a fixed
rate may not be the only or the most relevant constraint for
Alice. She may use the batch mode to lower the chances of
being detected or simply because the payload does not fit
a single image. The question then becomes a) how many
images should be in the bag and b) what kind of images
to include in the bag. A trivial answer to a) is to use as
large a bag as possible because the statistical detectability
approaches zero with increased bag size due to the square
root law (SRL) [13]. However, this is not practical because
of limited communication bandwidth! and diminishing rate
of the secret communication. The sender may be satisfied
with making sure the detectability is below a certain threshold
while staying within a specific bandwidth. Regarding task b),
as shown in [14], the sender can gain security by selecting
images that are more difficult to steganalyze with some level
of bias, neither too large nor too small. This gain is the so-
called bias gain. The result was, however, obtained for a sender
who maintains a fixed rate. Our paper builds upon this prior
art but considers the bag forming problem for a fixed absolute
payload.

In the next section, we introduce a previously proposed
modeling framework within which a closed form expression
for the ROC of Warden’s optimal pooler can be derived. In
Section III, we numerically analyze the trade off between
detectability, bag size, and the strength of source biasing for
a fixed payload size. To determine whether these findings
translate to real datasets, in Section IV we carry out a series
of experiments on ALASKA II with the embedding algorithm
HILL and machine learning based detectors. The experimental
results closely mimic the trends obtained within our simplified
model. The paper is concluded in Section V.

II. MODELING FRAMEWORK

In this section we introduce a simple modeling framework
for BSPS within which it is possible to derive a closed form for
the ROC of Warden’s optimal pooler. Our approach is detector-
centric [11], [12], [14] in that both the impact of embedding
and biased sampling are modeled through the distribution
of soft outputs a steganography detector. While this makes
our conclusions dependent on a detector, the advantages are
substantial as the problems of detection of steganography and

'E.g., a limit on email attachment size.



biased sampling can be considered jointly through a single hy-
pothesis test. The models are also estimable in practice, which
facilitates a close match between our theoretical findings and
experiments.

We denote the set of cover images by X and assume the
number of pixels N in each image X € X is fixed. For a fixed
steganographic method, cover images can hold an absolute
payload of C bits (e.g., C' = N log, 3 for grayscale images
without “wet” pixels and a ternary embedding method). We
assume that the steganographer (Alice) wishes to communicate
a fixed payload of aC' bits, o > 0.2 When Alice does not use
source biasing, she independently samples a bag of n covers
from X, X = (Xi,...,X,), with some choice of n > «
to fit the secret message. We emphasize that « is a measure
of relative payload to one image and not measured in bits
per pixel. For example, @ = 8 means the message length
is 8C bits, or 8 full images worth of payload. Alice also
commits to some payload allocation strategy (or spreading
strategy) to embed chunks of the secret message in each image.
Denoting the absolute payload to be embedded in X; with
a;C, 0 < a; < 1, the payload constraint is ZLI a; = a.
Alice produces the ith stego image X;(«;) by embedding X;
with payload of length «;.

We will assume that the Warden has a single-image
steganography detector (SID), which is a mapping d : X — R
that assigns to each image a scalar referred to as the soft output
(or response) of the detector. Given an intercepted bag of n
images Y = (Y1,...,Y,,), the Warden infers whether Alice
uses steganography by computing d(Y;) for all i = 1,...,n
and comparing 7(d(Y1),...,d(Y,)) against a threshold. Here,
m: R™ — R is Warden’s pooler.

A. Modeling detector outputs

For modeling purposes, we assume that sampling from the
cover source X is a two stage process. Alice first selects a
scene and then acquires it with a digital camera. For a fixed
scene, the output of the detector on all possible acquisitions of
the same scene with the same camera and settings is assumed
to follow a Gaussian distribution. After embedding a secret
message, the mean of this distribution is assumed to change
linearly with payload:

d(X;(Q)) ~ N (i +bia,02), 0<a<l, (D)
where b; > 0 is the slope of the detector’s response. The
Gaussianity of this conditional distribution is heuristically
justified by the independent heteroscedastic acquisition noise
model and the fact that d can be linearized on a small
neighborhood of the noise-free scene. Even though the soft
output of typical detectors built with machine learning is not
generally linear w.r.t. payload, it is approximately true for
small payloads (see, e.g., Figure 3 in [9]).

2Note that o is not necessarily bounded as we allow the message to be
arbitrarily large.

B. Source model and source biasing

From existing prior art on source modeling and biasing for
steganography [15], [16], [17], we build upon the work of
Dworetzky et al. [14] because this study is already framed
within the framework of BSPS. Within the adopted model (1),
we assume that the slopes b; follow a two-valued distribution
controlled by parameter p € (0, 1):

. . 2
1 with probability 1 — p.

b ~ B(p) = {5 with probability p
In other words, our cover source contains only two types
of images — those where steganography is easily detectable
(slope b; = 1) and difficult-to-steganalyze images with b; =
¢ < 1. Given the biasing parameter ¢ € (0, 1), source biasing
simply involves sampling images so that the distribution of
slopes follows the biased distribution b; ~ B(q) . Clearly,
Alice should choose ¢ > p so that she is more likely to embed
difficult-to-steganalyze images.
Within this bivalued model of the cover source, we assume
Alice uses a bivalued spreading strategy as introduced in [14].

First, we let K = [{i:b; =¢}| be the number of images
whose slopes are ¢, so K is a binomial random variable. Alice
assigns a; = «. to all K images with b; = ¢ and a; =

ap to all (n — K) images with b; = 1. The pair {a., a1}
is determined to satisfy the absolute payload constraint o =
Ka. + (n — K)a.

C. Optimal pooler

In order to obtain a simple hypothesis test for Warden’s
detection problem, we will assume that the parameters p and
€ are known both to Alice and the Warden and the Warden
knows her spreading strategy, biasing parameter ¢, and the
payload «. Moreover, we assume that the embedding does not
change the slopes b;.

Given a bag of images Y = (Y3,...,Y},), we further
simplify by assuming that 0? = 1 for all i and that y; is
known to the Warden, which makes Warden’s hypothesis test
simple

for all ¢

H() .
7‘[1 .

bi ~ B(q),

Yi NN(O,l)

),1) for all ¢
where y; = d(Y;) and K is the number of images with slope
€ in the bag. Observe that Alice’s assignment of «; depends
on the realization of K, but regardless the y; are conditionally
Gaussian given the b;. Hence, the most powerful detector for
this problem is the likelihood ratio test (LRT)

n 1 n
L(b,y) = > yibioi(K) — 3 > biai(K)
=1 =1

1—
+Klogg+(n—K)log a4 4)
p L—p




Given a decision threshold x € R, the ROC of Warden’s
optimal pooler has the following parametric form owing to
the law of total probability

_ =~ (n\ _\n—k x —U(k) + A*(k)
PFA($)kZO(k>p (1-p) Q( 2R >(5)

PD(x) = Z (Z) qk(l o q)n_kQ (l‘ — f(;’i;(?) (k)> :

k=0

(6)
where Ppy is the false alarm rate, Pp is the true positive rate,
Q is the M (0, 1) tail function,

(k) = 3 3 Bad(h) )
1=1

is the steganographic deflection coefficient of a bag condi-
tioned on the event K = k, and

l—q

. 8

= ®)

The closed form ROC (5)—(6) allows us to compute Pp at

a desired Ppp via a root-finding algorithm and thus study the

effect of the bag size n and the biasing parameter ¢ on security
numerically in the next section.

(k) = klog% + (n— k) log

III. MODEL ANALYSIS

As reported in our previous work [14], biasing has a
complicated effect on Warden’s ROC. For fixed bag size n,
payload size «, and small Ppp, the true positive rate Pp
decreases as ¢ increases until reaching a local minimum where
the trend reverses. The value of ¢ at which the minimum
occurs depends on Pra. For Pra sufficiently large, biasing
only increases Pp. Thus, in the rest of the paper we measure
security in terms of Pp at a fixed Ppa rather than a global
measure of the ROC such wAUC.

In this paper, we will assume that Alice has a maximal
detectability requirement Pp and hence she wants to choose
bag size n and bias ¢ so that Pp < FPp. As will be
seen below, she might additionally be interested to meet this
requirement with the smallest bag size n to avoid raising
suspicion from high bandwidth consumption or to comply
with a hard restriction n < np,.x if her overt communication
channel is bandwidth limited. This reasoning motivated us
to introduce the following two concepts — the bias gain and
bandwidth savings.

A. Bias gain
For fixed payload o and bag size n, let us denote the true

positive rate at fixed Pra when biasing with ¢ as Pp(q, Pra).
Alice’s bias gain is the difference

“Vbias (P, Pra) = Po(p, Pra) — Po(gopt, Pra), 9

where

Gopt (P, Pra) = argming Pp (g, Pra), (10)

is the optimal biasing parameter. In the rest of this section,
whenever the value of Pra is clear from the context and since

p will be fixed, for brevity we will simply write Ypias,Gopt.
and Pp(q) instead of (9)—(10).

B. Bandwidth savings

Saving on bandwidth is the other benefit Alice can enjoy due
to biasing. Formally, given Warden’s pooler with her decision
threshold set to achieve false alarm rate Pra, ¢ > p, and
a target Pp > Pra, let n(q, Pp, Pra) be the smallest bag
size for which Warden’s true positive rate satisfies Pp < Pp.>
The bandwidth savings is the difference between the bag sizes
that meet the target maximum detectability without and with
biasing:

w(p, Pp, Pra) = n(p, Pp, Pra) — n(qoptvﬁD7 Pga). (11)

The  relative  bandwidth the ratio

w(p, Pp, Pra)/n(p, Po, Pra).

savings s

C. Numerical study

To simplify matters in our numerical study we opted to fix
the cover source parameters to p = 0.3 and € = 0.01 which
best reflect the dataset “Binarized Alaska II” in [14].* The
payload allocation strategy we study is the bivalued Greedy
sender [14] — it first spreads the payload uniformly across all
images in the bag with b; = ¢ and, if necessary, spreads the
rest of the payload uniformly across images with b; = 1.

First, in Figures 1, 2, and 3 we present a few plots that
juxtapose Alice’s security without biasing, Pp(p), and with
optimal biasing, Pp(gops) as functions of bag size n. Each
plot fixes Alice’s payload size o and the Warden’s Ppp. The
black curves and multicolored curves correspond to Pp(p)
and Pp(gopt ), respectively. The marker color depicts the value
of the optimal biasing parameter, qopt. Some of the plots
are shown on a log-linear scale since Alice is interested in
achieving small Pp. Observe that as n — oo, Pp tends to
Prs (not 0) since the Warden will be randomly guessing
asymptotically.

Figure 1 depicts an example of Alice choosing the smallest
bag size that achieves her desired maximum detectability
Pp < Pp = 1072. If she does not bias, she should select
n = 46 but if she does bias she should select n = 34, saving
12 images on the size of her bag—her bandwidth savings (11)
is 12. Figure 3 shows an example of Alice choosing a bag
size to fit within a bandwidth limit ny,x = 10. Regardless
of whether she biases, she should select the largest bag size
n = 10 to minimize Pp. However, by biasing she decreases
the probability she is caught by 0.1.

Figure 4 shows the relative bandwidth savings as a function
of Pp for Pya = 1073 for four payloads. Note that the savings
can be significant, up to 35%, depending on the target Pp (c.f.
Figure 2 right).

3Such bag size must exist since limy,— o0 Pp(p, Pra) = Pra due to the
SRL.

4The relative number of hard-to-steganalyze images was about 0.3 and the
ratio between the average b; of hard images and easy images was 0.01.
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Figure 1. The Warden’s Pp (bivalued model) vs. bag size n under the model.
The bandwidth savings (11) for target Pp = 1072 is shown graphically.
Observe Pp is shown on a log scale while n is on a linear scale.

IV. EXPERIMENTS ON A REAL DATASET

All experiments were executed on ALASKA II developed as
in [18] without the final JPEG compression step. This dataset
contains 75,000 images, which we randomly divide into four
disjoint partitions for our experiments. One partition of 23k
images was used to train Alice’s SID (to spread her message),
and another partition of 23k images was used by the Warden to
train her SID for detection. Once the Warden’s SID is trained,
another partition of 10k images was used to form bags for
training the Warden’s pooler.> The remaining 19k images were
used to form bags for evaluation. Since we are interested in
small Pra, we form 10k cover and 10k stego bags for each
setting.

Given SID d and cover image X, the slope of X with
capacity C bpp was estimated from 100 embeddings with
random stego keys b = (E[d(X(C))] — d(X))/C with the
expectation taken over the embeddings.

A. Greedy batch sender

Since the slopes in real datasets follow a continuous dis-
tribution, we study the following modification of the greedy
sender. Given a set of n images, the sender uses her own
SID to estimate the slopes, orders them from the smallest
slope to the largest, and then using the embedding algorithm
HILL [19], she embeds the images one by one at their capacity
until the required payload is embedded. The last image may
be embedded only partially.

B. Single-image detectors and pooler

Both Alice and the Warden train an SRNet [20] on their
splits. Both were pre-trained on ImageNet as described in [21]
and refined to detect HILL on stego images embedded with
relative payloads randomly drawn from P ={0.05, 0.1, 0.2,

.., 1.5}. Each 23k image partition was further randomly

SFor each setting, Warden independently forms 5k cover and 5k stego
training bags.

split into disjoint subsets of 22k and lk images for training
and validation, respectively. The CNNs logit was used as the
detector’s soft response d.

For fixed bag size n, the Warden’s pooling func-
tion was implemented as a random forest (RF) (Python’s
package scikit-learn) on a 2n + l-dimensional
feature vector extracted from all images in the bag
(d(X1),...,d(X),b1,...bn,mcorr), where b; is Warden’s
detector response slope of the ith image and mcorr =
St a;d(X;) is the correlation of Warden’s SID soft outputs
with payloads that might reside in the images.

C. Biasing

Since the distribution of slopes in real datasets is continuous,
we use a version of compounding to bias the sampling of cover
images as described in detail in [14]. Denoting the CDF of
slopes b with F', biasing the sampling of F' was implemented
by a modified inverse transform sampling algorithm with the
beta distribution Beta(1/g,1), where ¢ > 0 is the biasing
parameter. Selecting cover images (their slopes) with bias ¢ is
achieved by sampling F~(G ' (U)), where G is the CDF of
Beta(1/gq, 1) and U is uniformly distributed on [0, 1]. Note that
since Beta(1, 1) = U, selecting ¢ = 1 corresponds to unbiased
sampling. The optimal value of ¢ was found experimentally
by a grid search 1/¢q € {0.05,0.1,0.15,...,0.95,1.0}.

D. Results

In Figure 5, we report Warden’s Pp at Ppy = 1072 (top)
and Pra = 1072 (bottom) versus bag size n for four payloads
when Alice biases with qop¢. Overall, the graphs show similar
trends to those observed for the simplified model in the previ-
ous section. Alice’s optimal bias changes with bag size and the
effect of biasing diminishes towards larger bag sizes. Alice can
also enjoy both bias gain and bandwidth savings. The relative
bandwidth savings for the smaller payloads a € {2, 4} at fixed
Pra = 1072 ranges between 20-30% if the desired Pp is
approximately between 0.03 and 0.4. For the larger payloads
o € {8,16} at fixed Ppy = 1072, the relative bandwidth
savings can reach between 30-50% for desired Pp > 0.1.

In summary, the experiments on a real dataset demonstrate
a close qualitative match between the trends observed within
our model in Section III. Selecting bags with a bias can
benefit Alice in two ways. She can either lower her chances
of being caught or save on the number of images she needs to
communicate. She can also opt for a trade off between both
of these benefits.

V. CONCLUSIONS

This paper studies the problem of forming bags in batch
steganography — how many and what kind of images Alice
should use. When Alice is allowed to sample the images
for her bag in a biased fashion to prefer sending harder-to-
steganalyze images, she can enjoy a gain in terms of a lower
detection probability Pp or she can choose to send a smaller
bag size at the same Pp. She can also trade off between both.
We provide theoretical insight by working within a suitably
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simplified modeling framework. Our findings are confirmed
in a practical setup on the ALASKA II dataset when Alice
embeds with HILL and Warden steganalyzes with a machine
learning based pooler. The bias gain and bandwidth savings
stay relatively consistent across different Warden’s detection

thresholds (fixed false alarms) and payloads.
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