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Abstract—In batch steganography, the sender spreads the
secret payload among multiple cover images forming a bag. The
question investigated in this paper is how many and what kind
of images the sender should select for her bag. We show that
by forming bags with a bias towards selecting images that are
more difficult to steganalyze, the sender can either lower the
probability of being detected or save on bandwidth by sending
a smaller bag. These improvements can be quite substantial.
Our study begins with theoretical reasoning within a suitably
simplified model. The findings are confirmed on experiments
with real images and modern steganographic and steganalysis
techniques.

Index Terms—Batch steganography, pooled steganalysis,
source biasing, forming bags, bias gain, bandwidth savings

I. INTRODUCTION

As introduced by Ker [1], in batch steganography the sender

spreads her secret payload among multiple covers (a bag) to

decrease the chances of being detected by the Warden and /

or to communicate a large message that would not fit in a

single cover. The Warden pools evidence from the same bag

to detect the use of steganography, a process known as pooled

steganalysis.

Batch steganography and pooled steganalysis (BSPS) have

been studied extensively in the past [2], [3], [4], [5], [6],

[7], [8], [9], [10]. A significant portion of the work focuses

on how to allocate chunks of the secret payload to covers

in the bag to minimize statistical detectability [5], [1], [3],

[6]. Comparatively less is available for the sender on how

to form the bags themselves. The authors of [11], [9], [12]

report that a sender who wishes to maintain a fixed secret rate

(relative payload per bag) can decrease statistical detectability

by selecting a bag whose size is neither too large nor too small.

The gain in security obtained this way is called the bag gain.

The authors of [6], [10] describe a method for selecting the

bag size adaptively (AdaBIM) for Gaussian embedding and

the image merging sender [5].

This present work is concerned with the following practical

question. Given a secret message of fixed length, how should

Alice form her bag of cover images for batch steganography?

We emphasize that the aforementioned prior art do not directly

address this question as most operate under the working as-

sumption that Alice wants to maintain a fixed communication
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rate (e.g., in bits per pixel). However, maintaining a fixed

rate may not be the only or the most relevant constraint for

Alice. She may use the batch mode to lower the chances of

being detected or simply because the payload does not fit

a single image. The question then becomes a) how many

images should be in the bag and b) what kind of images

to include in the bag. A trivial answer to a) is to use as

large a bag as possible because the statistical detectability

approaches zero with increased bag size due to the square

root law (SRL) [13]. However, this is not practical because

of limited communication bandwidth1 and diminishing rate

of the secret communication. The sender may be satisfied

with making sure the detectability is below a certain threshold

while staying within a specific bandwidth. Regarding task b),

as shown in [14], the sender can gain security by selecting

images that are more difficult to steganalyze with some level

of bias, neither too large nor too small. This gain is the so-

called bias gain. The result was, however, obtained for a sender

who maintains a fixed rate. Our paper builds upon this prior

art but considers the bag forming problem for a fixed absolute

payload.

In the next section, we introduce a previously proposed

modeling framework within which a closed form expression

for the ROC of Warden’s optimal pooler can be derived. In

Section III, we numerically analyze the trade off between

detectability, bag size, and the strength of source biasing for

a fixed payload size. To determine whether these findings

translate to real datasets, in Section IV we carry out a series

of experiments on ALASKA II with the embedding algorithm

HILL and machine learning based detectors. The experimental

results closely mimic the trends obtained within our simplified

model. The paper is concluded in Section V.

II. MODELING FRAMEWORK

In this section we introduce a simple modeling framework

for BSPS within which it is possible to derive a closed form for

the ROC of Warden’s optimal pooler. Our approach is detector-

centric [11], [12], [14] in that both the impact of embedding

and biased sampling are modeled through the distribution

of soft outputs a steganography detector. While this makes

our conclusions dependent on a detector, the advantages are

substantial as the problems of detection of steganography and

1E.g., a limit on email attachment size.



biased sampling can be considered jointly through a single hy-

pothesis test. The models are also estimable in practice, which

facilitates a close match between our theoretical findings and

experiments.

We denote the set of cover images by X and assume the

number of pixels N in each image X ∈ X is fixed. For a fixed

steganographic method, cover images can hold an absolute

payload of C bits (e.g., C = N log2 3 for grayscale images

without “wet” pixels and a ternary embedding method). We

assume that the steganographer (Alice) wishes to communicate

a fixed payload of αC bits, α ≥ 0.2 When Alice does not use

source biasing, she independently samples a bag of n covers

from X , X = (X1, . . . , Xn), with some choice of n ≥ α
to fit the secret message. We emphasize that α is a measure

of relative payload to one image and not measured in bits

per pixel. For example, α = 8 means the message length

is 8C bits, or 8 full images worth of payload. Alice also

commits to some payload allocation strategy (or spreading

strategy) to embed chunks of the secret message in each image.

Denoting the absolute payload to be embedded in Xi with

αiC, 0 ≤ αi ≤ 1, the payload constraint is
∑n

i=1 αi = α.

Alice produces the ith stego image Xi(αi) by embedding Xi

with payload of length αi.

We will assume that the Warden has a single-image

steganography detector (SID), which is a mapping d : X → R

that assigns to each image a scalar referred to as the soft output

(or response) of the detector. Given an intercepted bag of n
images Y = (Y1, . . . , Yn), the Warden infers whether Alice

uses steganography by computing d(Yi) for all i = 1, . . . , n
and comparing π(d(Y1), . . . , d(Yn)) against a threshold. Here,

π : Rn → R is Warden’s pooler.

A. Modeling detector outputs

For modeling purposes, we assume that sampling from the

cover source X is a two stage process. Alice first selects a

scene and then acquires it with a digital camera. For a fixed

scene, the output of the detector on all possible acquisitions of

the same scene with the same camera and settings is assumed

to follow a Gaussian distribution. After embedding a secret

message, the mean of this distribution is assumed to change

linearly with payload:

d(Xi(α)) ∼ N (µi + biα, σ
2
i ), 0 ≤ α ≤ 1, (1)

where bi ≥ 0 is the slope of the detector’s response. The

Gaussianity of this conditional distribution is heuristically

justified by the independent heteroscedastic acquisition noise

model and the fact that d can be linearized on a small

neighborhood of the noise-free scene. Even though the soft

output of typical detectors built with machine learning is not

generally linear w.r.t. payload, it is approximately true for

small payloads (see, e.g., Figure 3 in [9]).

2Note that α is not necessarily bounded as we allow the message to be
arbitrarily large.

B. Source model and source biasing

From existing prior art on source modeling and biasing for

steganography [15], [16], [17], we build upon the work of

Dworetzky et al. [14] because this study is already framed

within the framework of BSPS. Within the adopted model (1),

we assume that the slopes bi follow a two-valued distribution

controlled by parameter p ∈ (0, 1):

bi ∼ B(p) =

{
ε with probability p

1 with probability 1− p.
(2)

In other words, our cover source contains only two types

of images – those where steganography is easily detectable

(slope bi = 1) and difficult-to-steganalyze images with bi =
ε � 1. Given the biasing parameter q ∈ (0, 1), source biasing

simply involves sampling images so that the distribution of

slopes follows the biased distribution bi ∼ B(q) . Clearly,

Alice should choose q ≥ p so that she is more likely to embed

difficult-to-steganalyze images.

Within this bivalued model of the cover source, we assume

Alice uses a bivalued spreading strategy as introduced in [14].

First, we let K = |{i : bi = ε}| be the number of images

whose slopes are ε, so K is a binomial random variable. Alice

assigns αi = αε to all K images with bi = ε and αi =
α1 to all (n − K) images with bi = 1. The pair {αε, α1}
is determined to satisfy the absolute payload constraint α =
Kαε + (n−K)α1.

C. Optimal pooler

In order to obtain a simple hypothesis test for Warden’s

detection problem, we will assume that the parameters p and

ε are known both to Alice and the Warden and the Warden

knows her spreading strategy, biasing parameter q, and the

payload α. Moreover, we assume that the embedding does not

change the slopes bi.

Given a bag of images Y = (Y1, . . . , Yn), we further

simplify by assuming that σ2
i = 1 for all i and that µi is

known to the Warden, which makes Warden’s hypothesis test

simple

H0 : bi ∼ B(p), yi ∼ N (0, 1) for all i

H1 : bi ∼ B(q), yi ∼ N (biαi(K), 1) for all i
(3)

where yi = d(Yi) and K is the number of images with slope

ε in the bag. Observe that Alice’s assignment of αi depends

on the realization of K, but regardless the yi are conditionally

Gaussian given the bi. Hence, the most powerful detector for

this problem is the likelihood ratio test (LRT)

L(b,y) =
n∑

i=1

yibiαi(K)−
1

2

n∑

i=1

b2iα
2
i (K)

+K log
q

p
+ (n−K) log

1− q

1− p
. (4)



Given a decision threshold x ∈ R, the ROC of Warden’s

optimal pooler has the following parametric form owing to

the law of total probability

PFA(x) =

n∑

k=0

(
n

k

)
pk(1− p)n−kQ

(
x− `(k) + ∆2(k)√

2∆2(k)

)

(5)

PD(x) =

n∑

k=0

(
n

k

)
qk(1− q)n−kQ

(
x− `(k)−∆2(k)√

2∆2(k)

)
,

(6)

where PFA is the false alarm rate, PD is the true positive rate,

Q is the N (0, 1) tail function,

∆2(k) =
1

2

n∑

i=1

b2iα
2
i (k) (7)

is the steganographic deflection coefficient of a bag condi-

tioned on the event K = k, and

`(k) = k log
q

p
+ (n− k) log

1− q

1− p
. (8)

The closed form ROC (5)–(6) allows us to compute PD at

a desired PFA via a root-finding algorithm and thus study the

effect of the bag size n and the biasing parameter q on security

numerically in the next section.

III. MODEL ANALYSIS

As reported in our previous work [14], biasing has a

complicated effect on Warden’s ROC. For fixed bag size n,

payload size α, and small PFA, the true positive rate PD

decreases as q increases until reaching a local minimum where

the trend reverses. The value of q at which the minimum

occurs depends on PFA. For PFA sufficiently large, biasing

only increases PD. Thus, in the rest of the paper we measure

security in terms of PD at a fixed PFA rather than a global

measure of the ROC such wAUC.

In this paper, we will assume that Alice has a maximal

detectability requirement P̃D and hence she wants to choose

bag size n and bias q so that PD ≤ P̃D. As will be

seen below, she might additionally be interested to meet this

requirement with the smallest bag size n to avoid raising

suspicion from high bandwidth consumption or to comply

with a hard restriction n ≤ nmax if her overt communication

channel is bandwidth limited. This reasoning motivated us

to introduce the following two concepts – the bias gain and

bandwidth savings.

A. Bias gain

For fixed payload α and bag size n, let us denote the true

positive rate at fixed PFA when biasing with q as PD(q, PFA).
Alice’s bias gain is the difference

γbias(p, PFA) = PD(p, PFA)− PD(qopt, PFA), (9)

where

qopt(p, PFA) := argminqPD(q, PFA), (10)

is the optimal biasing parameter. In the rest of this section,

whenever the value of PFA is clear from the context and since

p will be fixed, for brevity we will simply write γbias,qopt,
and PD(q) instead of (9)–(10).

B. Bandwidth savings

Saving on bandwidth is the other benefit Alice can enjoy due

to biasing. Formally, given Warden’s pooler with her decision

threshold set to achieve false alarm rate PFA, q ≥ p, and

a target P̃D ≥ PFA, let n(q, P̃D, PFA) be the smallest bag

size for which Warden’s true positive rate satisfies PD ≤ P̃D.3

The bandwidth savings is the difference between the bag sizes

that meet the target maximum detectability without and with

biasing:

w(p, PD, PFA) = n(p, P̃D, PFA)− n(qopt, P̃D, PFA). (11)

The relative bandwidth savings is the ratio

w(p, P̃D, PFA)/n(p, P̃D, PFA).

C. Numerical study

To simplify matters in our numerical study we opted to fix

the cover source parameters to p = 0.3 and ε = 0.01 which

best reflect the dataset “Binarized Alaska II” in [14].4 The

payload allocation strategy we study is the bivalued Greedy

sender [14] – it first spreads the payload uniformly across all

images in the bag with bi = ε and, if necessary, spreads the

rest of the payload uniformly across images with bi = 1.

First, in Figures 1, 2, and 3 we present a few plots that

juxtapose Alice’s security without biasing, PD(p), and with

optimal biasing, PD(qopt) as functions of bag size n. Each

plot fixes Alice’s payload size α and the Warden’s PFA. The

black curves and multicolored curves correspond to PD(p)
and PD(qopt), respectively. The marker color depicts the value

of the optimal biasing parameter, qopt. Some of the plots

are shown on a log-linear scale since Alice is interested in

achieving small PD. Observe that as n → ∞, PD tends to

PFA (not 0) since the Warden will be randomly guessing

asymptotically.

Figure 1 depicts an example of Alice choosing the smallest

bag size that achieves her desired maximum detectability

PD ≤ P̃D = 10−2. If she does not bias, she should select

n = 46 but if she does bias she should select n = 34, saving

12 images on the size of her bag—her bandwidth savings (11)

is 12. Figure 3 shows an example of Alice choosing a bag

size to fit within a bandwidth limit nmax = 10. Regardless

of whether she biases, she should select the largest bag size

n = 10 to minimize PD. However, by biasing she decreases

the probability she is caught by 0.1.

Figure 4 shows the relative bandwidth savings as a function

of P̃D for PFA = 10−3 for four payloads. Note that the savings

can be significant, up to 35%, depending on the target P̃D (c.f.

Figure 2 right).

3Such bag size must exist since limn→∞ PD(p, PFA) = PFA due to the
SRL.

4The relative number of hard-to-steganalyze images was about 0.3 and the
ratio between the average bi of hard images and easy images was 0.01.
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