Embedded Zerotree Wavelet (EZW)

These Notes are Based on (or use material from):
1.

Image Compression
o

J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet
Coefficients,” IEEE Trans. on Signal Processing, VVol. 41, No. 12, pp. 3445
— 3462, Dec. 1993.

J. S. Walker and T. Q. Nguyen, “Wavelet-Based Image Compression,” Ch. 6
In The Transform and Data Compression Handbook, edited by K. R. Rao
and P. C. Yip, CRC Press, 2001.

C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 Still Image
Coding System: An Overview,” IEEE Trans. Cons. Elect., Vol. 46., No. 4,
pp. 1103 — 1127, Nov. 2000.

B. E. Usevitch, A Tutorial on Modern Lossy Wavelet Image Compression:
Foundations of JPEG 2000, IEEE Signal Processing Magazine, pp. 22 — 35,
Sept. 2001.

Part of Abstract from Shapiro’s Original Paper [1]

The embedded zerotree wavelet algorithm (EZW) is a simple, vet
remarkably effective, image compression algorithm, having the property
that the bits in the bit stream are generated in order of importance,
yielding a fully embedded code. The embedded code represents a sequence
of binary decisions that distinguish an image from the “null” image. Using
an embedded coding algorithm, an encoder can terminate the encoding
at any point thereby allowing a target rate or target distortion metric to be
met exactly. Also, given a bit stream, the decoder can cease decoding at
any point in the bit stream and still produce exactly the same image that
would have been encoded at the bit rate corresponding to the truncated bit
stream. In addition to producing a fully embedded bit stream, EZW
consistently produces compression results that are competitive with
virtually all known compression algorithms on standard test images. Yet
this performance is achieved with a technique that reqguires absolutely no
training, no pre-stored tables or codebooks, and requires no prior
knowledge of the image source...

The EZW algorithm is based on four key concepts [1]:

1. Discrete wavelet transform (hierarchical subband decomp.)

2. Prediction of the absence of significant information across
scales by exploiting the self-similarity inherent in images

3. Entropy-coded successive-approximation guantization

4. *“Universal” lossless data compression which is achieved via
adaptive arithmetic coding.

Why Wavelets? [1]

» Traditional DCT & subband coding: trends “obscure” anomalies that carry
info

— E.g., edges get spread, yielding many non-zero coefficients to be coded

» Wauvelets are better at localizing edges and other anomalies
— Yields a few non-zero coefficients & many zero coefficients

— Difficulty: telling the decoder “where” the few non-zero’s are!!!

» Natural images in general have a low pass spectrum.

— the wavelet coefficients will, on average, be smaller in the higher subbands than in
the lower subbands.

» Large wavelet coefficients are more important than smaller wavelet
coefficients.

 Significance map (SM): binary array indicating location of zero/non-zero
coefficients

— Typically requires a large fraction of bit budget to specify the SM

— Wavelets provide a structure (zerotrees) to the SM that yields efficient coding

Motivation for EZW [1]

Transform Coding Needs “Significance Map” to be sent:
At low bit rates a large # of the transform coefficients are

Quantized Coefficients

quantized to zero =» Insignificant Coefficients

We’d like to not have to actually send any bits to code these
» That is... allocate zero bits to the insignificant coefficients
But... you need to somehow inform the decoder about which

coefficients are insignificant

» JPEG does this using run-length coding: (Run Length, Next Nonzero)
In general... Send a significance map

64

o6

48

32

24

16

0

0

56

48

40

24

16

23

40

40

30

24

16

8

32

32

32

24

24

16

24

24

16

16

16

0

0

(@) fenl No o

O|0|O |00

O|o|O|O

O|O|00|O

OO |O|0]|O|O|O

(@) ol [l faol el ool Nab)

Significance Map
11]1f1f1]1]0f0
11]1f1f1]1]0f0
11]1f1f1[1]0](1
11]1]1[1]1]0f0
1[1]1]1]ofo1]0O
1|1]1fofo1]0f0
ofoJo[1fofo]o]o
ofoJojofofo]o]o

Motivation for EZW (cont.)

Here is a two-stage wavelet decomposition of an image.
Notice the large number of zeros (black) but that run-length
coding is not likely to be the best approach:

Fig. 5. Example of dyadic decomposition mnto subbands for
the test image ‘barbara’

(Figure from [3])

Motivation for EZW (cont.)

But... Couldn’t we use entropy coding to make this more
efficient? Yes... In fact, that is what JPEG does. But it is easy
to see that even with entropy coding the significance map (SM)
Idea get “expensive” as we go to low bit rates [1].

Total Bit Cost = Bit Cost of SM + Bit Cost of Nonzero Values
Under some simplifying conditions (see [1]) Shapiro argued
using entropy calculations that the percentage of total cost
taken up by SM coding increases as the bit rate decreases!!!

=>» SM approach gets increasingly inefficient as we try to

significant coefficients are gets large at low rates

Example (see [1]): at 0.5 bit/pixel must use 54% of bits for SM

Shapiro’s Wavelet Idea for Solving SM Problem

Quad Trees:
> Same Spatial Region
> Different Resolution Levels (sub-bands)

For final, LL subband: 9 “H
one covers the same : fr——H L,
area as one pixel in the B : HL
(13 H kb 1
detail” space above
HH,
i FFEH

Idea: An insignificant coefficient is VERY likely to have all of
Its “descendents” on its quad tree also be insignificant
> Such a coefficient is called a “Zerotree Root”

Zerotree Coding

Every wavelet coefficient at a given scale can be related to a set of coefficients at the
next finer scale of similar orientation

Zerotree root (ZTR) is a low scale “zero-valued” coefficient for which all the related
higher-scale coefficients are also “zero-valued”

» Specifying a ZTR allows the decoder to “track down” and zero out all the related
higher-scale coefficients

o=y B
g == oy c=m o 3
CEN pa—0ls

m\\q s =N

A
AUINHIRNANY |

A 15, Example trees that can be defined on the wavelet trans-
form. The roots of the three trees, indicated by shading, origi-

nate in the LL,, LH,, and HL, subbands.

= =
—
—
—

From: B. E. Usevitch, A Tutorial on Modern Lossy Wavelet Image Compression: Foundations of JPEG 2000, IEEE SP Mag, Sept. 2001

lllustration of Zerotree Occurance

‘Original Image

Coefficients are
“thresholded at 16
In this example

Image and its WT
are from [2]

How Do Zerotrees Help?

The previous chart showed the prevalence of zerotrees.
Now... how do they help with the SM problem?

You only have to tell the decoder where a zero root lies... it
can figure out where all the descendent zeros on the tree lie
by using the rule for generating quadtrees.

So... there is an agreed upon a rule and it so happens that
zerotree roots happen alot when trying to code at low bit
rates...

At low bit rates, zerotree roots occur frequently even at the
coarse subband levels and that leads to long trees... and that
very efficiently conveys the SM info

Note: we don’t really rely on a true SM, but we convey it
using a model

What Causes Zerotrees?

Use 1-D example to illustrate:

t
f N\ /\ LN >
N\ A4 t
Wavelets :
| VAN) Increasing
at various V.oV 't Resolution
resolution 4 NN)
TV V. i
levels L
Fly ,
SLLN 't
\ L

These wavelets have insignificant Note: the wavelets

Inner product with signal at this location | themselves integrate
to zero...

Successive Approximation: The Other Part of EZW

While zerotrees are a major part of EZW they are not the
only significant part...

The other part has to do with embedded coding.

The goal of embedded coding is to create a bit stream that
can be truncated at any point by the decoder..... AND you
get a reconstructed signal that is R-D optimal for the number
of bits so far received!

There are many ways to do this. EZW uses a successive
approximation view of quantization...

... and it links this idea to zerotree coding in a way that
allows zerotrees to be highly exploited.

Successive Approximation Quantizer

Start with coarsest and successively refine to the finest...

.... equivalent to starting with most significant magnitude bit
(sign bit is handled separately)

and successively including the least significant bits

.....Driven by descending threshold: T;,, = T;/2
T,

T
=S : &

Coarse *=

Successive Approximation Quantizer (cont.)

Applving the SA guantizer with in EZW:

* Compute the wavelet transform of the image

« Set a threshold T, near the middle of the range of WT coefficient
magnitudes

 This gives a large “dead zone” that creates of lots of “insignificant
values”

= These give rise to lots of zerotrees
= Zerotrees efficiently handle significance map problem
= Send MSB’s of significant coefficients
* Then reduce threshold: T;,; = T;/2
= This causes some former insig coeff to become significant
= =>» only have to tell where new significance has occurred

= For previously significant: refine by sending next finer bit

EZW Algorithm

Sequence of Decreasing Thresholds: T, T,, ..., Ty
with T, = T, ,/2 and |coefficients| <2 T
Maintain Two Separate L.ists:
« Dominant List: coordinates of coeffs not yet found significant
» Subordinate List: magnitudes of coefficients already found to be significant

For each threshold, perform two passes: Dominant Pass then Subordinate Pass
Dominant Pass (Significance Map Pass)

e Coeff’s on Dominant List (i.e. currently insig.) are compared to T,
— asking: has this coeff become significant at the new threshold?

« The resulting significance map is zero-tree coded and sent: Entropy Code
— Code significance using four symbols: using an
A e e e s IR e, ' Adaptlve AC
.+ Zerotree Root (ZTR) Positive Significant (POS)
-« lsolated Zero (12) « Negative Significant (NEG)

...

— For each coeff that has now become significant (POS or NEG)
 put its magnitude on the Subordinate List (making it eligible for future refinement)
» remove it from the Dominant List (because it has now been found significant)

EZW Algorithm (cont.)

Subordinate Pass (Significance Coefficient Refinement Pass)

« Provide next lower signif. bit on the magnitude of each coeff on Subord List
— Halve the quantizer cells to get the next finer quantizer
— If magnitude of coeff is in upper half of old cell, provide “1”
— If magnitude of coeff is in lower half of old cell, provide “0”

« Entropy code sequence of refinement bits using an adaptive AC

Now repeat with next lower threshold

« Stop when total bit budget is exhausted

» Encoded stream is an embedded stream
— At first you get an “optimal” low rate version
— As more bits come you get a successively better distortion
— Can terminate at any time prior to reaching the “full-rate” version

EZW Example (from [1])

First Thresholding

Example of 3-level WT
of an 8x8 image

Largest coefficient magn = 63 = T, = 32
... S0 after thresholding we have:

63--34 0 3
63(-34/49 0o0l0 0 0 O
31l 07 3 4

0ol0|l0 0|0 O O O

1 7 77 Z2/Z
] _ ZZZ/Z 0 0/0 0|0 O O O
- 27 727 0 0[O0 0|0 0O 0 O
7T TS 0 0 0 47/0 0 0 O
0O 0 0 0/0 O O O
0 0 0 0/0O O O O
0 0 0 0/0O O O O

First Dominant Pass

PROCESSING OF FIRST DOMINANT Pass AT THRESHOLD T = 32. SYMBOLS
ARE POS FoR POSITIVE SIGNIFICANT, NEG FOR NEGATIVE SIGNIFICANT, [Z
For ISOLATED ZERO, ZTR FOR ZEROTREE R0OOT, AND Z FOR A ZERO WHEN
THERE ARE NO CHILDREN. THE RECONSTRUCTION MAGNITUDES ARE TAKEN

63-1-34 0 7
3% 1413 -1
e 9

1

A—47
63|-34[49 0|0 0 0 O
ojol0o 0|l0O 0 0 O
0 o|l0o 0o|l0O 0 O O
0O 0/0 0|0 0O O O
0 0 0 47/0 0 0 O
0O 0 0 0[O 0 0 O
0 0 0 0/]O O O O
0 0 0 0/O O O O

AS THE CENTER OF THE UNCERTAINTY INTERVAL

Coefhcient Reconstruction

Comment | Subband [Value | Symbol Value
(1) LL3 63 POS ‘I 48
HL3 -34 NEG -48

0) LH3 3 Z 0
(3) i3 7 7ZTR 0
HL2 49 POS 48

(4) HL2 10 ZTR 0
HL2 14 ZTR 0

HL2 -13 ZTR 0

LH2 15 LTR 0

(5) LH2 14 17 0
LH2 -0 LTR 0

LH2 -1 ZTR 0

0) HLI T Z 0
HLI E Z 0

HL1 3 Z 0

HL1 4 Z 0

LH1 -1 Z 0

(7) LH1 47 POS 48
LH1 -3 Z 0

CHi 3 2z) 0

\ Sequence of Symbols sent

... but via Arith. Coding

« Dominant List: coordinates of coeffs not yet found significant

« Subordinate List: magnitudes of coefficients already found to be significant

Dominant List Contains
Pointers to all these zeros

Subordinate List

ofo0 0 0 O
ofojo0 o0of0 0O O O
o 00 O|O O O O
o 00 OO O O O
0O 0 O 0O 0 0 O
o 0 0 0jO0O O O O
o 0 0 0jO0O O O O
o 0 0 0jO O O O

63
34

49
47 FIrst Subordinate Pass

Now refines magnitude of each
element on Subordinate List... Right
now we know that each element’s
magnitude lies in (32,64]

32 48 64

\ J\ J
Y Y

Send “0” Send “1”

v

Stream due to 15t Sub. Pass: 1010

2"d Dominant Pass

New Thresh: T, =T, /2 =16

Only need to re-visit those
on the Sub-Ord List... (not
those on the Dom List...
which are blacked on WT to
the left) But previously
Significant values can be
part of a zerotree!!!

There is some ambiguity
as to if the can be ZT Roots

Coeff
Value

Symbol

Recon
Value

XXX

XXX

ZTR

-31

Neg

-24

23

Pos

24

15

ZTR

14

ZTR

-9

ZTR

-7

ZTR

(Shapiro did NOT... some
later papers DID)... We
allow it here.

3

ZTR

-12

ZTR

14

ZTR

8

ZTR

Dominant List: coordinates of coeffs not yet found significant
Subordinate List: magnitudes of coefficients already found to be significant

Dominant List Contains

Subordinate List

Pointers to all these zeros 63
Ofo0 O O O 34
O OO O O O 49
O OO0 O]J]O O O O 47
o 0lo olo 0 0 o -31 2nd Subordinate Pass
0 0 0 0 0 0 0 23 Now refines magnitude of each
element on Subordinate List...
O 0 O OJ0 O o0 o
O 0 O O|JO0O O 0 O
O 0 O O|JO0O O 0 O
| I | I | R
| I | I |
24

Send “0”

A\ A
Y Y Y Y

Send “1” Send “0” Send “1” Send “0” Send “1”

Stream due to 2" Sub. Pass: 100 110

The algorithm continues like this until the threshold falls below
a user specified minimum threshold

It Is Important to remember that the sequence of symbols
(alphabet size of 4) output during each dominant pass is
arithmetic coded.

