3.4 "Computing" CT Convolution

For DT systems, CONV. is something we do for analysis and for implementation

For CT systems, we do conv. for analysis Nature does " inplementation.

CT Conv. Properties Many of the properties are the same as for NT Conv. We only discuss the new ones here. InDerivative Property Convertive $\frac{d}{dt} \left[\chi(t) * \mathcal{V}(t) \right] = \chi(t) * \mathcal{V}(t)$ = X(4) * V(2)

2. Integration Property Let y(t) = X(t) * h(t) $\int_{-\infty}^{t} \mathcal{G}(x) dx = \left[\int_{-\infty}^{t} \chi(x) dx \right] \star h(t) = \chi(t) \star \left[\int_{-\infty}^{t} h(x) dx \right]$

Steps for Graphical Convolution: y(t) = x(t)*h(t)

- **1. <u>Re-Write the signals as functions of \tau</u>: x(\tau) and h(\tau)**
- 2. <u>Flip</u> just <u>one</u> of the signals around t = 0 to get <u>either</u> $x(-\tau)$ <u>or</u> $h(-\tau)$
 - a. It is usually best to flip the signal with shorter duration
 - b. For notational purposes <u>here</u>: we'll flip $h(\tau)$ to get $h(-\tau)$
- 3. <u>Find Edges</u> of the flipped signal
 - a. Find the left-hand-edge τ -value of $h(-\tau)$: call it $\tau_{L,0}$
 - b. Find the right-hand-edge τ -value of $h(-\tau)$: call it $\tau_{R,0}$
- 4. Shift $h(-\tau)$ by an arbitrary value of *t* to get $h(t \tau)$ and get its edges
 - a. Find the left-hand-edge τ -value of $h(t \tau)$ as a function of t: call it $\tau_{L,t}$
 - **Important:** It will <u>always</u> be... $\tau_{L,t} = \mathbf{t} + \tau_{L,0}$
 - b. Find the right-hand-edge τ -value of $h(t \tau)$ as a function of t: call it $\tau_{R,t}$
 - **<u>Important</u>**: It will <u>always</u> be... $\tau_{R,t} = \mathbf{t} + \tau_{R,0}$

<u>Note</u>: If the signal you flipped is <u>NOT finite duration</u>, one or both of $\tau_{L,t}$ and $\tau_{R,t}$ will be infinite ($\tau_{L,t} = -\infty$ and/or $\tau_{R,t} = \infty$)

<u>Note</u>: I use τ for what the book uses λ ... It is not a big deal as they are just dummy variables!!!

1

Steps Continued

5. Find Regions of τ -Overlap

- a. What you are trying to do here is find intervals of *t* over which the product $x(\tau) h(t \tau)$ has a single mathematical form in terms of τ
- b. In each region find: Interval of *t* that makes the identified overlap happen
- c. Working examples is the best way to learn how this is done
- **Tips**:Regions should be contiguous with no gaps!!!Don't worry about< vs. \leq etc.
- 6. For Each Region: Form the Product $x(\tau) h(t \tau)$ and Integrate
 - a. Form product $x(\tau) h(t \tau)$
 - b. <u>Find the Limits of Integration</u> by finding the interval of τ over which the product is nonzero
 - i. Found by seeing where the edges of $x(\tau)$ and $h(t \tau)$ lie
 - ii. Recall that the edges of $h(t \tau)$ are $\tau_{L,t}$ and $\tau_{R,t}$, which often depend on the value of *t*
 - So... the limits of integration <u>may</u> depend on *t*
 - c. Integrate the product $x(\tau) h(t \tau)$ over the limits found in 6b
 - i. The result is generally a function of *t*, but is only valid for the interval of t found for the current region
 - ii. Think of the result as a "time-section" of the output y(t)

Steps Continued

- 7. <u>"Assemble" the output</u> from the output time-sections for all the regions
 - a. Note: you do NOT add the sections together
 - b. You define the output "piecewise"
 - c. Finally, if possible, look for a way to write the output in a simpler form

Example: Graphically Convolve Two Signals

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$
$$2^{x(t)}$$

2 t

We'll see later that these two forms are Equal

<u>This</u> is why we can flip <u>either</u> signal **Step #1: Write as Function of** *τ*

Step #2: Flip $h(\tau)$ to get $h(-\tau)$

5

Step #3: Find Edges of Flipped Signal

Doing Step #4: Shift by t to get $h(t-\tau)$ & Its Edges

Step #5: Find Regions of τ-Overlap

Step #5 (Continued): Find Regions of τ-Overlap

Step #6: Form Product & Integrate For Each Region

Step #6 (Continued): Form Product & Integrate For Each Region

Step #6 (Continued): Form Product & Integrate For Each Region

Step #7: "Assemble" Output Signal

