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Power-Distortion Metrics for Path Planning Over
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Abstract—Path planning is an important component of
autonomous mobile sensing systems. This paper studies upper
and lower bounds of communication performance over Gaussian
sensor networks, to drive power-distortion metrics for path plan-
ning problems. The Gaussian multiple-access channel is employed
as a channel model and two source models are considered. In
the first setting, the underlying source is estimated with mini-
mum mean-squared-error, while in the second, reconstruction of
a random spatial field is considered. For both problem settings,
the upper and the lower bounds of sensor power-distortion curve
are derived. For both settings, the upper bounds follow from
the amplify-and-forward scheme and the lower bounds admit a
unified derivation based on data processing inequality and ten-
sorization property of the maximal correlation measure. Next,
closed-form solutions of the optimal power allocation problems
are obtained under a weighted sum-power constraint. The gap
between the upper and the lower bounds is analyzed for both
weighted sum and individual power constrained settings. Finally,
these metrics are used to drive a path planning algorithm and
the effects of power-distortion metrics, network parameters, and
power optimization on the optimized path selection are analyzed.

Index Terms—Path planning, underwater communications,
Gaussian sensor networks.

I. INTRODUCTION

S ENSOR networks can provide monitoring and sensing, for
surveillance and localization applications as well as sci-

entific studies, over a wide variety of environments such as
agricultural fields, desert climes, and underwater systems [2].
In many of these applications, the coverage area of interest is
so large that inter-sensor communication is not cost-effective or
feasible. For example, in underwater environmental sensing, the
ocean is vast and sensors are unlikely to be densely deployed.
In these scenarios, it is energy-efficient and cost-effective to
employ an autonomous data collecting vehicle (AV) that can
travel to all sensors and download the data. In order to commu-
nicate with the sensors the AV must be physically close to each
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sensor, traveling along a path. The path planning problem in
this context is to find the optimal route along which the AV can
collect the data from all sensors at maximum quality with min-
imal resource use (such as overall traveling distance, delay, or
total energy spent at the sensors for communication) [3]–[10].

In this paper, we consider lossy reconstruction of the data
with minimal distortion and with minimal energy spent at the
sensors. More specifically, we derive and analyze the power-
distortion characterization of the fundamental limits of com-
munication over sensor networks, with the goal of providing
meaningful metrics for robotic path planning. In general, an
AV may have two different types of objectives: to estimate the
underlying random source, which is typically modeled as a ran-
dom process in time (referred as source reconstruction, SR,
throughout the paper); or to reconstruct the spatial random field
generated by the source (field reconstruction, FR).

Consider the motivating example in Fig. 1 which involves
one memoryless source and three static sensors. The objective
of the AV is to collect source data from the sensors. Each sensor
observes the source over a noisy “sensing” channel whose qual-
ity depends on the distance between the sensor and the source as
follows: if a sensor is closer to the source, it senses the source
over a less noisy channel. The sensors transmit their observa-
tion to AV over a multiple-access channel. In the first setting of
interest, the objective of the AV is to estimate the source sig-
nal (SR). It is then intuitively expected that the AV chooses a
path toward the sensor(s) which are closest to the source (sim-
ilar to path (a) in Fig. 1), since they represent the underlying
source at maximum fidelity. In the second setting, the objective
is to reconstruct the entire spatial random field using the mea-
surements at the sensors. This setting corresponds to a class of
environmental monitoring applications where physical quanti-
ties, such as the temperature, pressure etc. are tracked. In this
second case, which we refer as field reconstruction (FR), the
objective of the AV simplifies to estimating the sensor mea-
surements, i.e., noisy observations of the source, with minimal
weighted distortion, where the weights represent the impor-
tance of the associated sensor measurement in reconstructing
the spatial field. It is intuitively expected that the optimal AV
route would be toward the sensors whose measurements rep-
resent the largest field (i.e., the largest weight). In our running
example in Fig. 1, the optimal path could look like path (b). In
this paper, we formalize these two classes of distortion metrics
and analyze the effects of them on the optimized path selection.

We study the power-distortion metrics on a Gaussian sensor
network model, see e.g., [11]–[19]. In [12], the performance
of a simple amplify-and-forward (AF) scheme is studied, in
conjunction with optimal power assignment over the sensors
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Fig. 1. The underwater data gathering example.

given a sum-power budget. For a particular symmetric setting,
Gastpar showed that indeed the AF scheme is optimal over all
encoding/decoding methods that allow arbitrarily high delay
[20]. However, it was also shown that, in more realistic asym-
metric settings, the AF scheme may be suboptimal [21]. In [22],
optimal communication strategies were studied for transmit-
ting jointly Gaussian sources over a Gaussian MAC. In general,
the optimal communication strategies are unknown for both of
these settings [23].

We note that there are other sensor network models beyond
the one in this paper, see e.g., [24], and the references therein.
Vector settings, associated with the SR metric in our model,
were studied in [12] and [19]. Our preliminary results appeared
in [1]. The effects of active sensing and adversarial nodes
in communications over sensor networks were analyzed in
[25] and [26], respectively. Information theoretic analysis of
the scaling behavior of such sensor networks was considered
in [27].

The contributions of this paper are the following:
• Building on [22] and [20], we derive the lower and the

upper bounds of the power-distortion functions for the
two problem settings. The upper bounds are obtained
through the AF scheme, while the lower bounds follow
from the data processing inequality used in conjunction
with the tensorization property of the maximal correla-
tion, also known as the Witsenhausen’s lemma [28].

• For each of these metrics, we derive, in closed-form,
strategies for optimal the power allocation over sensors
subject to a weighted-sum power constraint. Perhaps sur-
prisingly, in all cases, the original problem is non-convex
in the individual power allocation variables, however it
can be translated into a convex optimization problem that
admits a closed-form solution.

• We provide numerical analysis of the different metrics
and uncover cases where the gap between the upper and
the lower bounds is small (or large), implying the near
optimality of the AF scheme (or the need for more sophis-
ticated coding schemes). Our results associated with the
SR metric imply that when the sensing and the commu-
nication channels are matched- i.e, the sensor with better
sensing channel has the better communication channel-
the performance loss due to using the AF scheme is low.
On the other hand, this loss increases when the sensing
and the communication channels are inversely matched,
i.e., when the sensor with the better sensing channel
has the worse communication channel. However, for the
FR metric, the AF scheme performs significantly worse

than the lower bound. We also observe that in general,
the lower bounds are more sensitive to the choice of
parameters than the upper bounds.

• Based on the proposed metrics, we implement a sim-
ple path planning algorithm. We analyze, via numerical
simulations, the impact of power optimization and met-
ric selection on the robustness of the path planning to
the sensing/communication channel parameters and the
network topology.

This paper is organized as follows: we present the communi-
cation model along with the specific metrics in Section II. We
present our results regarding lower and upper bounds of com-
munication performance with and without power optimization
in Section III. We numerically analyze these metrics and their
use in path planning in Section IV. We present conclusions and
discussion in Section V.

II. COMMUNICATION MODEL

A. Notation

Let E(·) and || · ||2 denote the expectation and l2 norm
operators, and R and R

+ denote the set of real and positive
real numbers, respectively. In general, lowercase letters (e.g.,
x) denote scalars, boldface lowercase (e.g., x) vectors, upper-
case (e.g., U, X ) matrices and random variables, and boldface
uppercase (e.g., x) random vectors. Unless otherwise speci-
fied, vectors and random vectors have length m, and matrices
have size m × m. The kth element of vector x is denoted by
[x]k and the (i, j)th element and the kth column of the matrix
A are denoted by [A]i j and [A]k respectively. Let AT denote
the transpose of matrix A. A diagonal matrix with diagonal
elements a is denoted by diag(a). RX and RX Z denote the auto-
covariance of X and cross covariance of X and Z respectively.
Gaussian distribution with mean μ and covariance matrix R is
denoted as N(μ, R). The mutual information between random
variables X and Y is denoted as I (X; Y ).

B. Problem Definition

The problem setting is depicted in Fig. 2 where the underly-
ing source {S(i)} is a sequence of independently and identically
distributed (i.i.d.) real valued Gaussian random variables with
zero mean and unit variance, without loss of generality. We con-
sider a pre-deployed network of M sensors. Sensor m observes
a sequence {Um(i)} defined as

Um(i) = βm S(i) + Wm(i), (1)

where {Wm(i)} is a sequence of i.i.d. Gaussian random vari-
ables with zero mean and unit variance, independent of {S(i)}.
Sensor m applies the encoding function gN

m : RN → R
N to the

observation sequence of length N , Um to generate a sequence
of channel inputs Xm = gN

m (Um) that satisfies

1

N

N∑
i=1

E{X2
m(i)} ≤ Pm (2)

where Pm is the individual power constraint on sensor m. This
problem formulation presumes fixed power budget, Pm , for
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each sensor. Another problem setting we consider involves a
weighted sum-power constraint in the form of

1

N

M∑
m=1

rm

N∑
i=1

E{X2
m(i)} ≤ PT , (3)

where the weight vector r = [r1, r2 . . . rM ] is known. The
channel output is

Y (i) = Z(i) +
M∑

m=1

αm Xm(i), (4)

where {Z(i)} is a sequence of i.i.d. Gaussian random vari-
ables of zero mean and unit variance, independent of {S(i)} and
{Wm(i)}. The receiver applies a function hN : RN → R

N to the
received sequence {Y } to minimize the cost-which is defined
explicitly in the next section for each scenario of interest.

With a slight abuse of notation, we let J (P) denote
the distortion metric with the power allocation vector P =
[P1, P2, . . . , PM ] (assigned power to the sensor m is denoted
by Pm), and J (PT ) denote the metric with total power PT with
optimized power allocation. The sensor network parameters, β,
and the communication channel parameters, α, are fixed and
known to the sensors and the receiver; and the block-length N
is asymptotically large, i.e., N → ∞.

III. DISTORTION METRICS

A. Source Reconstruction

The source reconstruction (SR) metric, denoted as JS ,
involves estimating the underlying source S with minimum
mean squared error (MSE):

JS(P) � lim
N→∞

1

N

N∑
i=1

E{(S(i) − Ŝ(i))2}, (5)

where Ŝ(i) is the estimate of S(i) at the receiver. While the
exact characterization of JS(P) is in general difficult [23], we
state upper and lower bounds of JS(P) in the following theorem.

Theorem 1: For any given P, J L
S (P) ≤ JS(P) ≤ JU

S (P)

holds where JU
S (P) and JU

L (P) are given in (6) and (7) respec-
tively.

JU
S (P) =

1 +
M∑

m=1
α2

m
Pm

1+β2
m

1 +
(

M∑
m=1

βmαm

√
Pm

1+β2
m

)2

+
M∑

m=1
α2

m
Pm

1+β2
m

,

(6)

J L
S (P) = 1

1 +
M∑

m=1
β2

m⎛
⎜⎜⎜⎜⎝1 +

M∑
m=1

β2
m

1 +
M∑

m=1
α2

m
Pm

1+β2
m

+
(

M∑
m=1

βmαm

√
Pm

1+β2
m

)2

⎞
⎟⎟⎟⎟⎠ .

(7)

Proof: The derivation of JU
S (P) follows directly from the

AF communication scheme, where each sensor scales its input
Um(i), symbol-by-symbol, to match E{X2

m(i)} to the allowed

power Pm for each time instant i , i.e., Xm(i) =
√

Pm
1+β2

m
Um(i).

We have

JU
S (P) = E{S2} − E{SY }(E{Y 2})−1

E{Y S} (8)

where

E{SY } =
M∑

m=1

βmαm

√
Pm

1 + β2
m

, (9)

and

E{Y 2} = 1 +
(

M∑
m=1

βmαm

√
Pm

1 + β2
m

)2

+
M∑

m=1

α2
m

Pm

1 + β2
m

.

(10)
Plugging (9) and (10) into (8), we obtain (6).

For J L
S (P), we follow the steps in [20] to generalize its

main result for the symmetric setting to the asymmetric setting
considered here. First, we note that from the data processing
theorem, we must have

I (U1, U2, . . . , UM ; Ŝ) ≤ I (X1, X2, . . . , XM ; Y) (11)

The left hand side can be lower bounded as:

I (U1, U2, . . . , UM ; Ŝ) ≥ N R(D) (12)

where R(D) is derived in the Appendix A. The right hand side
can be upper bounded by

I (X1, . . . , XM ; Y)≤
N∑

i=1

I (X1(i), . . . , X M (i); Y (i)) (13)

≤ max
N∑

i=1

I (X1(i), . . . , X M (i); Y (i))

(14)

= 1

2

N∑
i=1

log(1 + αT RX (i)α) (15)

where RX (i) is defined as

{RX (i)}p,r � E{X p(i)Xr (i)} ∀p, r ∈ [1 : M]. (16)

Note that (13) follows from the memoryless property of the
channel and the maximum in (14) is over the joint density
of X1(i), . . . , X M+K (i), given the structural constraints on
RX (i) due to the power constraints. It is well known that the
maximum is achieved by the jointly Gaussian density for a
given covariance, yielding (15). Since the logarithm is a mono-
tonically increasing function, the optimal encoding functions
gN

m (·), m ∈ [1 : M] equivalently maximize
∑
p,r

E{X p(i)Xr (i)}
for all i . Note that

Xm = gN
m (Um) (17)
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Fig. 2. The sensor network model

and hence the gN
m (·), m ∈ [1 : M] that maximize∑

p,r
E{X p(i)Xr (i)} can be found by invoking Witsenhausen’s

lemma (given in Appendix C) as Xm(i) = γ N Um where

γ N =
(√

Pm

1 + β2
m

, . . . ,

√
Pm

1 + β2
m

)
. (18)

Plugging (18) in (12), we have

R = 1

2
log

⎛
⎝1 +

M∑
m=1

α2
m

Pm

1 + β2
m

+
(

M∑
m=1

βmαm

√
Pm

1 + β2
m

)2⎞⎠
(19)

Plugging the expression for R(D) (derived in the Appendix A)
in (75), we obtain (7). �

Remark 1: It is of interest to see whether the mutual infor-
mation or source SNR based metrics (see e.g., [29], [30]) are
of use here. Noting that S and Ŝ used in the derivation of both
lower and upper bounds are jointly Gaussian, it is straightfor-
ward to show that I (S; Ŝ) = − 1

2 log JS(P). Hence, minimizing

JS(P) and maximizing I (S; Ŝ) are effectively identical for path
selection purposes. The same conclusion also holds for the field
reconstruction metric (defined in the next section) by similar
arguments. Also note that the source SNR is exactly 1/JS(P)

and hence, maximizing source SNR is equivalent to minimizing
JS(P).

Next, we discuss the optimal power allocation among sensors
and derive the optimal trade-off between distortion metrics and
the weighted sum of transmit power. Particularly, we study the
following optimization problem:

minimize
P1,P2,...,PM

JS(P1, P2, . . . , PM )

subject to
M∑

m=1

rm Pm ≤ PT

where r = [r1, r2, . . . , rM ] and PT are given optimization
parameters. The following theorem states the PT versus JS

relationship when the power allocation is optimized.

Theorem 2: For any given PT and a weight vector r =
[r1, r2 . . . rM ], J L

S (PT ) ≤ JS(PT ) ≤ JU
S (PT ) holds where

JU
S (PT ) =

(
1 + PT

M∑
m=1

α2
mβ2

m

rm + rmβ2
m + PT α2

m

)−1

(20)

J L
S (PT ) = 1

1 +
M∑

m=1
β2

m

⎛
⎜⎜⎜⎝1 +

M∑
m=1

β2
m

1 + PT
λ

⎞
⎟⎟⎟⎠ (21)

and λ satisfies

M∑
m=1

α2
mβ2

m

rm + rmβ2
m − λα2

m
= 1

λ
. (22)

Proof: JU
S (PT ): The proof follows from similar steps of

the proof of Theorem 4 of [12] with appropriate changes due to
the weight vector r, and is omitted.

J L
S (PT ): Minimization of J L

S (P) in P is equivalent to
minimizing

D = −
(

M∑
m=1

βmαm

√
Pm

1 + β2
m

)2

−
M∑

m=1

α2
m

Pm

1 + β2
m

(23)

subject to
M∑

m=1
rm Pm ≤ PT over Pm ≥ 0 for all m. This objec-

tive function is not convex1 in the variables Pm . We first impose
a slackness variable

t =
M∑

m=1

αmβm

√
Pm

1 + β2
m

. (24)

and analyze the dual problem: minimize

M∑
m=1

rm Pm, (25)

1This can easily be shown by checking the positive definiteness Hessian of
the objective function.
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subject to

−D −
M∑

m=1

α2
m

Pm

1 + β2
m

≤ t2, (26)

and (24). This problem is convex in the variables Pm and t ,
and can be converted into unconstrained optimization problem:
minimize

J =
M∑

m=1

rm Pm + λ1

(
−D −

M∑
m=1

α2
m

Pm

1 + β2
m

− t2

)

+ λ2

(
t −

M∑
m=1

αmβm

√
Pm

1 + β2
m

)
, (27)

where λ1 ∈ R
+ and λ2 ∈ R. Next, we note that Karush-Kuhn-

Tucker (KKT) optimality conditions are sufficient for this
problem (no duality gap) since the objective function is con-
vex in the variables Pm and t [31]. We determine the KKT
conditions:

∂ J

∂ Pm
= rm − λ1

α2
m

1 + β2
m

− λ2
αmβm

2
√

Pm(1 + β2
m)

= 0, (28)

∂ J

∂t
= −2λ1t + λ2 = 0, (29)

− D −
M∑

m=1

α2
m

Pm

1 + β2
m

= t2, (30)

and we have (24). From (28), we obtain Pm in terms of λ1 and
λ2 as

Pm = λ2
2

4

α2
mβ2

m(1 + β2
m)(

rm + rmβ2
m − λ1α2

m

)2 . (31)

Plugging (31) into (24), we have

t = λ2

2

M∑
m=1

α2
mβ2

m

rm + rmβ2
m − λ1α2

m
. (32)

Re-writing (30) using (29) and (32), we have

λ2
2

4λ1

M∑
m=1

α2
mβ2

m

rm + rmβ2
m − λ1α2

m
=

− D − λ2
2

4

M∑
m=1

α4
mβ2

m(
rm + rmβ2

m − λ1α2
m

)2 (33)

which simplifies to

−D = λ2
2

4λ1

M∑
m=1

rm(1 + β2
m)α2

mβ2
m(

rm + rmβ2
m − λ1α2

m

)2 (34)

= 1

λ1

M∑
m=1

rm Pm = PT

λ1
. (35)

Expressing (32) using (29), we obtain (22). Using (35), we
obtain (21). �

Remark 2: The coefficient λ is a Lagrange parameter in
a convex optimization problem, as demonstrated in the proof
above; hence, the solution of (22) exists and it is unique [31]. It
can be found numerically by a bisection search. In practice, the
computational complexity of determining λ is relatively low,
since it is computed only once for each network setting, i.e., it
does not depend on PT .

B. Field Reconstruction

In the field reconstruction (FR) setting, the objective of the
receiver is to estimate the entire random field which is covered
by the sensors. We assume that at any point is represented by
the closest sensor, or alternatively a linear interpolation of the
closest k sensors readings. Hence, we define the FR metric as

JF (P) � lim
N→∞

1

N

N∑
i=1

M∑
m=1

γmE{(Um(i) − Ûm(i))2} (36)

where the γm are determined by k and network parameters
(i.e., sensor locations). Before stating the results, we define
the covariance matrix of sensor inputs U , i.e., RU � E{UUT }
which can explicitly be expressed as a function of β

RU =

⎛
⎜⎜⎜⎝

1 + β2
1 β1β2 . . . β1βM

β1β2 1 + β2
2 . . . β2βM

...
. . .

...

β1βM . . . 1 + β2
M

⎞
⎟⎟⎟⎠ . (37)

RU admits an eigen-decomposition RU = QT
U �QU where

QU is unitary and � is a diagonal matrix with elements
1, . . . , 1, 1 +∑

m β2
m . The following transformed weight vec-

tor is used in the subsequent results:

γ ′
k � [QT

U diag(γ )QU ]kk . (38)

Again, the complete characterization of JF (P) is difficult in
general [23], and similar to the SR case, we state upper and
lower bounds in the following theorem. In the derivation of
JU

F (P), we assume a high power (low distortion) regime, in
order to simplify exposition.

Theorem 3: For a given P, J L
F (P) ≤ JF (P) ≤ JU

F (P) holds,
where

JU
F (P) =

−

M∑
m=1

γmα2
m

Pm
1+β2

m
+A2

(
M∑

m=1
γmβ2

m

)
+2A

(
M∑

m=1
γmβmαm

√
Pm

1+β2
m

)

1 + A2 +
M∑

m=1
α2

m
Pm

1+β2
m

+
M∑

m=1

γm(1 + β2
m) (39)

J L
F (P) = M

(
(1 +

M∑
m=1

β2
m)

M∏
m=1

γ ′
m

) 1
M

(
1 +

M∑
m=1

α2
m

Pm

1 + β2
m

+ A2

)− 1
M

(40)
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where A =
M∑

m=1
βmαm

√
Pm

1+β2
m
.

Proof: The derivation of JU
F (P) follows from the AF

scheme, where for each m, we have

Jm = E{U 2
m} − E{UmY }(E{Y 2})−1

E{YUm} (41)

Noting that

E{UmY } = αm

√
Pm

1 + β2
m

+ βm

M∑
m=1

βmαm

√
Pm

1 + β2
m

, (42)

and using the expression for (E{Y 2})−1 given in (10), we have:

Jm = 1 + β2
m −

(
αm

√
Pm

1+β2
m

+ βm

M∑
m=1

βmαm

√
Pm

1+β2
m

)2

1 +
(

M∑
m=1

βmαm

√
Pm

1+β2
m

)2

+
M∑

m=1
α2

m
Pm

1+β2
m

.

(43)

Noting that JU
F (P) =

M∑
m=1

γm Jm , we obtain (39). To derive

J L
F (P), we follow the steps (11)-(19) verbatim, with the differ-

ence that we use vector R(D) (derived in Appendix B) instead
of R(D) associated with remote compression. Combining (19)
with (84), we obtain (40). �

Remark 3: As a side note, by (76), we note that γ majorizes

γ ′ (see [32, 2.B.3]) which implies that
M∏

m=1
γ ′

m ≥
M∏

m=1
γm . A

looser bound (independent of γ ′) can be obtained by replacing
γ ′ with γ .

Next, we optimize power allocation over the sensors. For
notational convenience, here we assume2 γm = 1 for all m. The
following theorem states the upper and lower bounds of the FR
metric with power optimization.

Theorem 4: For any given PT and r = [r1, r2 . . . rM ],
J L

F (PT ) ≤ JF (PT ) ≤ JU
F (PT ) holds where

JU
F (PT ) = M +

M∑
m=1

β2
m + PT

λ1 − PT
, (44)

J L
F (PT ) = M

((
1 +

M∑
m=1

β2
m

)
λ2

PT

) 1
M

, (45)

and λ1 and λ2 satisfy(
−1−

(
1 − PT

λ1

)(
1+

M∑
m=1

β2
m

))
M∑

m=1

α2
mβ2

m

rm+rmβ2
m+λ1α2

m
= 1

λ1
,

(46)
M∑

m=1

α2
mβ2

m

rm + rmβ2
m − λ2α2

m
= 1

λ2
. (47)

2Note that this assumption does not introduce any loss of generality, since
γ can be incorporated into the power scaling coefficients β in the problem
definition.

Proof: Plugging γm = 1 for all m in (39), we have

JU
F (P) = M +

M∑
m=1

β2
m

−

M∑
m=1

α2
m

Pm
1+β2

m
+
(

2 +
M∑

m=1
β2

m

)(
M∑

m=1
βmαm

√
Pm

1+β2
m

)2

1 +
(

M∑
m=1

βmαm

√
Pm

1+β2
m

)2

+
M∑

m=1
α2

m
Pm

1+β2
m

(48)

Minimization of JU
F (P) in P is equivalent to minimizing

D = −

M∑
m=1

α2
m

Pm
1+β2

m
+
(

2 +
M∑

m=1
β2

m

)(
M∑

m=1
βmαm

√
Pm

1+β2
m

)2

1 +
(

M∑
m=1

βmαm

√
Pm

1+β2
m

)2

+
M∑

m=1
α2

m
Pm

1+β2
m

(49)
subject to

M∑
m=1

rm Pm ≤ PT (50)

for Pm ≥ 0 for all m. This objective function is not convex in
Pm . Following similar steps to those in the proof of Theorem 2,
we first convert the problem into a convex form introducing a
slack variable

t =
M∑

m=1

αmβm

√
Pm

1 + β2
m

, (51)

and express the optimizing problem as to minimize
M∑

m=1
rm Pm

subject to

D

1 + D
+

M∑
m=1

α2
m

Pm

1 + β2
m

≤ δt2, (52)

and (51) where

δ � −1 −
1 +

M∑
m=1

β2
m

1 + D
. (53)

This problem is convex in the variables Pm and t , hence can be
converted into an unconstrained optimization problem where
we minimize

J =
M∑

m=1

rm Pm + λ1

(
D

1 + D
+

M∑
m=1

α2
m

Pm

1 + β2
m

− δt2

)
(54)

+λ2

(
t −

M∑
m=1

αmβm

√
Pm

1 + β2
m

)
, (55)

where λ1 ∈ R
+ and λ2 ∈ R. Applying the KKT conditions, we

have
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∂ J

∂ Pm
= rm + λ1

α2
m

1 + β2
m

− λ2
αmβm

2
√

Pm(1 + β2
m)

= 0, (56)

∂ J

∂t
= −2λ1δt + λ2 = 0, (57)

∂ J

∂λ1
= D

1 + D
+

M∑
m=1

α2
m

Pm

1 + β2
m

− δt2 = 0. (58)

From (56), we obtain Pm in terms of λ1 and λ2 as

Pm = λ2
2

4

α2
mβ2

m(1 + β2
m)(

rm + rmβ2
m + λ1α2

m

)2 . (59)

Plugging (59) in (51), we have

t = λ2

2

M∑
m=1

α2
mβ2

m

rm + rmβ2
m + λ1α2

m
. (60)

Re-writing (58) using (57) and (60), we have

λ2
2

4λ1

M∑
m=1

α2
mβ2

m

rm + rmβ2
m + λ1α2

m
= D

1 + D

+ λ2
2

4

M∑
m=1

α4
mβ2

m(
rm + rmβ2

m + λ1α2
m

)2 (61)

which simplifies to

λ1
D

1 + D
= λ2

2

4

M∑
m=1

rm(1 + β2
m)α2

mβ2
m(

rm + rmβ2
m + λ1α2

m

)2 (62)

=
M∑

m=1

rm Pm = PT . (63)

Plugging (63) in (48), we obtain JU
F (PT ). Plugging (53), (57),

and (63) in (60), we obtain (46).
J L

F (PT ): Minimization of J L
F (P) in P is equivalent to

minimizing

D = −
(

M∑
m=1

βmαm

√
Pm

1 + β2
m

)2

−
M∑

m=1

α2
m

Pm

1 + β2
m

, (64)

subject to
M∑

m=1
rm Pm ≤ PT and Pm ≥ 0 for all m. This problem

is solved in the proof of Theorem 2, hence we follow the same
steps as in (24)-(35) and obtain J L

F (PT ). �
Remark 4: Similar to the SR setting (see Remark 2), λ1 and

λ2 in (47) and (46) are in fact Lagrange parameters in a convex
optimization problem as shown in the proof above, hence they
exist and they are unique [31]. Unlike (22), the computation of
λ1 in (46) depends on PT in addition to α and β. However, for
a given PT , the computation employs similar steps.

Remark 5: The optimal power allocation strategies in both
SR and FR settings can be implemented by each sensor in a
distributed manner: the central agent (e.g., the AV) computes
the optimal values of λ1 and λ2 (or λ in SR setting), and broad-
casts this information to all sensors. Each sensor then computes
its own power allocation based on local parameters αm and βm

and the broadcasted global parameters λ1 and λ2 (or λ).

IV. NUMERICAL RESULTS

We first analyze different metrics, particularly the gap
between upper and lower bounds and the impact of power opti-
mization. Next, we focus on the problem of path planning in
conjunction with these metrics.

A. Metrics

In our experiments, we select α and β randomly, uniformly
from the interval [0, 1]. To analyze the impact of sensing and
communication channel ordering on the metrics, we look at
two extreme cases: i) ordered channels, i.e., the better sensing
channel (larger β) is matched to better communication channel
(larger α), ii) reverse ordered, i.e., larger β is matched to smaller
α. For the FR metric, we set γm = 1 for all m. To obtain statis-
tically meaningful results, we average the results over 10000
runs of this experiment. We set the number of sensors 5, i.e.,
M = 5.

In Fig. 3, we plot the comparative results with individual
power constraints. All sensors are assumed to have identical
power, Pm = P for all m. As can be seen numerically, when
the sensing and the communication channels are matched, i.e.,
the sensor with the better sensing channel sees a better commu-
nication channel, the gap between upper and lower bounds is
small, and as they get mismatched, this gap widens. An impor-
tant observation is that in the matched order case, upper and
lower bounds perform very close for both settings, particularly
for the SR setting.

In Fig. 4, we plot the comparative results with a total power
constraint, with rm = 1 for all m.

B. Path Planning Results

To obtain the optimal paths given these metrics, we use a
simple search algorithm based on determining the step (in four
directions) at each point in a greedy manner, i.e., the AV at loca-
tion (i, j) moves to (i ± 1, j) or (i, j ± 1) or stays at (i, j)
depending on the cost at these locations. More sophisticated
search algorithms can be found in the robotics literature (see
e.g., [7] and the references therein). We note that the optimal
path will depend on the specific search algorithm used. Our
objective here is to demonstrate the use of the proposed metrics
in path planning, and their implications on the chosen path, i.e.,
the type of distortion metric chosen and network parameters
affect the optimal path significantly. Our numerical examples
demonstrate this conclusion via numerical examples generated
using this simple search algorithm.

We consider two network topologies, both of which involve
three sensors and one source. The sensing parameters β are
chosen as inversely proportional with the squared distances
between the sensor and the source, i.e., for source and mth

sensor locations xs and xm , we have βm = b × ||xs − xm ||−2
2

for some b ∈ R
+. The channel parameters, α, are determined

similarly: given the AV location xa , we have αm = a × ||xa −
xm ||−2

2 , for a given a ∈ R
+. The path step size is set to 0.01 and

paths are of length 30 steps, and the weight vector r = [1, 1, 1].
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Fig. 3. MSE bounds for uniform power allocation.

The AV is set to point [−1, 0] on a 3 × 3.5 grid and source loca-
tion is set to [1.5, 0]. We provide two examples that demonstrate
different aspects of path selection and metrics.

We first consider a network topology similar to the motivat-
ing example in Fig. 1, where an AV gathers data from three
deployed sensors. We choose a = b = 10, and Pm = 10 for
each sensor, hence PT = 30, and γ = [1, 1, 4] to capture the
effect of non-symmetry in the network topology. We plot the
paths chosen by upper bounds metrics, in Fig. 5(a) and ones
with the lower bounds, in Fig. 5(b) Here, the upper bounds
(obtained via the AF scheme) of the SR metric yields a path
towards the sensors closest to the source, as shown in Fig. 5(a).
Power optimization makes this path only more skewed toward
the closest sensor (sensor-1), which is theoretically expected
since sensor 1 senses the source with minimum distortion, and
hence more power is allowed for sensor-1 in the optimized
power allocation method. The upper bound of the FR metric
(achieved via the AF scheme) results in a path towards sensor-
3, which is due to fact that sensor-3 represents a larger area
than other sensors and, hence the asymmetry in γ . Therefore,
the numerical path selection results demonstrated in Fig. 5(a)
confirm our intuition in the example in Fig. 1. However, for the
lower bounds, all four metrics yield the same path towards to

Fig. 4. MSE bounds for optimized power allocation.

the closest sensor to the AV (sensor-2). The results in this exam-
ple indicate a very interesting conclusion on the importance of
the metric selection, since the optimal paths in this example
strongly depend on the metric chosen.

Next, we change the network topology to a semi-symmetric
version where two of the sensors (sensors 1 and 3) are equally
distant from the source. In this example, we analyze the impact
of channel parameters on the metrics and eventually path selec-
tion. Since the settings is relatively more symmetric (as opposed
to previous setting), we set γ = [1, 1, 1] and r = [1, 1, 1]. We
plot the paths found for parameter values a = 10, b = 1, and
Pm = 100 for all m in Fig. 6. Note that this example presents
an interesting case for path selection, since paths chosen by dif-
ferent metrics vary widely. First, let us explain why JU

S (P) and
JU

F (P) yield these paths. An obvious question is the follow-
ing: why do these paths tend to move away from all the sensors
and source in the beginning of the path? The answer lies in
the network parameters and topology. This example involves a
very small sensing parameter, (b), compared to communication
parameters, (a and P), which implies that the sensor with the
worst sensing channel can even amplify overall noise at the AV,
i.e., sensor-2 output interferes with the source S, in SR case,
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Fig. 5. Paths chosen in network topology-1.

or with other sensor observations Um in the FR case. Note that
AV can only change its communication channel quality while
the sensing channel is fixed in the problem setting. This indi-
cates that the AV can only mitigate the effect of these ”bad
sensors” (here sensor-2) by moving away from them. This is
exactly what we observe in Fig. 6(a) for the paths generated
by JU

S (P) and JU
F (P). Note that due to symmetry overall costs

(when measured by the same metric) of both paths are identical
(in Fig. 6(a), these two paths with identical costs are assigned
to JU

S (P) and JU
F (P) randomly). When power is optimized,

sensor-2 is not allowed to decrease the communication chan-
nel SNR at the AV (P2 	 10), hence the paths by JU

S (PT ) and
JU

F (PT ) are towards to the middle of all sensors due to sym-
metry. Note that all lower bounds yields the same path for this
example.

Next, in the same network topology, we increase the sensing
parameter b and decrease the communication parameters, a and
P , specifically, we set a = 1, b = 10, Pm = 10 for all m, and
hence PT = 30, and keep other parameters the same as the pre-
vious setting (r = [1, 1, 1], γ = [1, 1, 1]). For these settings, as
Fig. 7 demonstrates, all metrics yield a path toward the closest
sensor to AV, which is sensor-2 in this setting. This is theoreti-
cally expected since the bottleneck for the performance here is
the communication over MAC, as opposed to the sensing chan-
nel (which was the case in the previous setting in Fig. 6) due to
channel parameters.

Fig. 6. Paths chosen in network topology-2, small sensing parameters.

V. CONCLUSIONS

In this paper, we have analyzed bounds of communication
performance over Gaussian sensor networks for path planning
problems. We have considered two main metrics: i) the underly-
ing source is estimated, and ii) the spatial field is reconstructed.
We have provided a unified proof for the upper and lower
bounds of the fundamental limits of communication with these
metrics, for fixed and optimized power allocations. Finally, the
effect of metric selection, network topology and channel param-
eters on the selected path is analyzed. Our results show that
depending on the network, metric selection and power opti-
mization may significantly impact the optimal path in data
gathering. Simulation results suggest that the metrics associated
with the lower bounds seem to be more sensitive to chan-
nel parameters and network topology than those of the outer
bounds.

This paper is concerned static sensors and a mobile data gath-
ering device, and a single scalar source and scalar channels. Our
future work includes extension to dynamic and multi-source
and multi-dimensional settings, and on the optimal resource
(power) allocation in time over a fixed path period, and its
impact on path selection. Analysis of the settings where sensing
is performed in a mobile platform (see e.g., [33]), or partially
known or timely varying network statistics are left as future
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Fig. 7. Paths chosen in network topology-2, small communication parameters

work. We finally note that this paper highlights the need for fur-
ther information-theoretic analysis of fundamental bounds for
sensor networks. One research direction is to utilize structured
codes [34] in such networked source-channel coding problems.

APPENDIX A
GAUSSIAN REMOTE COMPRESSION PROBLEM

In this problem, an underlying Gaussian source S ∼ N(0, 1)

is observed under additive noise W ∼ N(0, RW ) as U = S +
W. These noisy observations, i.e., U, must be encoded in such
a way that the decoder produces a good approximation to the
original underlying source. This problem was proposed in [35]
and solved in [36] (see also [37]). A lower bound for this func-
tion for the non-Gaussian sources within the symmetric setting
where all U ’s have identical statistics was presented in [38].
Here, we simply extend the results in [36] to our asymmetric
setting, noting

D = E{(S − Ŝ)2}, (65)

R = min I (U; Ŝ), (66)

where U = βS + W, W ∼ N(0, RW ), and RW is an M × M
identity matrix. The minimization in (66) is over all conditional
densities p(ŝ|U) that satisfy (65). The MSE distortion can be
written as sum of two terms

D =E{(S − T + T − Ŝ)2}, (67)

=E{(S − T )2} + E{(T − Ŝ)2}, (68)

where T � E{S|U}. Note that (68) holds since

E{(S − T )(Ŝ − T )} = 0, (69)

as the estimation error, S − T , is orthogonal to any function3 of
the observation, U. The estimation distortion

Dest � E{(S − T )2} (70)

is constant with respect to p(ŝ|U). Hence, the minimization is
over the densities that satisfy a distortion constraint of the form
E{(T − Ŝ)2} ≤ Drd and R = min I (U; Ŝ). Hence, we write
(68) as

D = Drd + Dest . (71)

Note that due to their Gaussianity, T is a sufficient statistic of U
for S, i.e., S − T − U forms a Markov chain in that order and
T ∼ N(0, σ 2

T ). Hence, R = min I (U; Ŝ) = min I (T ; Ŝ) where
minimization is over p(ŝ|t) that satisfy E{(T − Ŝ)2} ≤ Drd ,
where all variables are Gaussian. This is the classical Gaussian
rate-distortion problem, and hence:

Drd(R) = σ 2
T 2−2R . (72)

Note that T = RSU R−1
U U, where RSU � E{SUT } and RU is

given in (37). Note that RU is structured, and can easily be
manipulated. We compute σ 2

T as

σ 2
T = RSU R−1

U RT
SU =

M∑
m=1

β2
m

1 +
M∑

m=1
β2

m

, (73)

and using standard linear estimation principles, we obtain

Dest = 1

1 +
M∑

m=1
β2

m

. (74)

Plugging (74) in (72) and using (71) yields

D =

⎛
⎜⎜⎜⎝ 1

1 +
M∑

m=1
β2

m

+

M∑
m=1

β2
m

1 +
M∑

m=1
β2

m

2−2R

⎞
⎟⎟⎟⎠ . (75)

APPENDIX B
GAUSSIAN VECTOR SOURCE CODING

The problem of interest to find D(R) that minimize D =
M∑

m=1
γmE{(Um − Ûm)2}, over Rm ≥ 0 subject to R =

M∑
m=1

Rm .

3Note that Ŝ is also a deterministic function of U, since the optimal
reconstruction can always be achieved by deterministic codes.
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This is a variant of a standard problem of encoding multiple
independent Gaussian variables [39]. Note that RU given in
(37) accepts the eigen-decomposition RU = QT

U �QU , where

� is a diagonal matrix with entries 1, 1, . . . , 1, 1 +
M∑

m=1
β2

m and

QU is a unitary matrix. Hence, the problem can be converted
(by linear transformation) to that of encoding independent

Gaussian scalars with variances 1, 1, . . . , 1 +
M∑

m=1
β2

m , i.e., we

minimize D =
M∑

m=1
γ ′

m Dm subject to R =
M∑

m=1
Rm , where

γ ′
k � [QT

U diag(γ )QU ]kk (76)

and Rm =
(

1
2 log

(
�m
Dm

))+
. Equivalently, we minimize

J =
M∑

m=1

1

2
log

(
�m

Dm

)
+ λ

M∑
m=1

γ ′
m Dm (77)

over the set of Dm that satisfy Dm ≤ �m (hence, Rm ≥ 0,∀m).
Applying the KKT conditions, we have

∂ J

∂ Dm
= −1

2

1

Dm
+ λγ ′

m = 0, (78)

or

Dm = 1

2λγ ′
m

� θ/γ ′
m . (79)

Hence, we have

R = 1

2

M∑
m=1

log

(
�m

Dm

)
, (80)

where

Dm = min{θ/γ ′
m,�m}, (81)

and θ is chosen so that D =
M∑

m=1
γ ′

m Dm , for diag(γ ′) =
QT

U diag(γ )QU . The water-filling nature of the solution (see
(81)) prevents the achievement of closed-form solutions for
the power-distortion curve. To provide insight, we assume the
“high rate” (low distortion) regime, where each component is
effective, i.e., θ ≤ min

m
{�mγ ′

m}. With this assumption, we have

Dm = θ/γ ′
m , and hence

θ = D/M. (82)

Plugging (82) in (80), we have

R = 1

2

M∑
m=1

log
(
�mγ ′

m

)− M

2
log

(
D

M

)
, (83)

and noting that
M∑

m=1
log

(
�mγ ′

m

) = log

(
M∏

m=1
�mγ ′

m

)
=

log

(
(1 +

M∑
m=1

β2
m)

M∏
m=1

γ ′
m

)
, we have

D = M

(
(1 +

M∑
m=1

β2
m)

M∏
m=1

γ ′
m

) 1
M

exp

{
− 2

M
R

}
. (84)

APPENDIX C
WITSENHAUSEN’S LEMMA

Lemma 1 (from [28]): Consider two sequences of i.i.d. ran-
dom variables X (i) and Y (i), generated from a joint density
PX,Y , and two arbitrary functions f, g : R → R satisfying

E{ f (X)} = E{g(Y )} = 0, E{ f 2(X)} = E{g2(Y )} = 1.

(85)

For any functions fN , gN : RN → R satisfying

E{ fN (X)} = E{gN (Y)} = 0, E{ f 2
N (X)} = E{g2

N (Y)} = 1,

(86)

for length N vectors X and Y, we have

sup
fN ,gN

E{ fN (X)gN (Y)} ≤ sup
f,g

E{ f (X)g(Y )}. (87)

Moreover, the supremum above is attained by linear mappings,
if PX,Y is Gaussian density.
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