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a b s t r a c t

This paper considers a sequential sensor scheduling and remote estimation problemwith one sensor and
one estimator. The sensor makes sequential observations about the state of an underlying memoryless
stochastic process, and makes a decision as to whether or not to send this measurement to the estimator.
The sensor and the estimator have the common objective of minimizing expected distortion in the
estimation of the state of the process, over a finite time horizon. The sensor is either charged a cost for each
transmission or constrained on transmission times. As opposed to the prior work where communication
between the sensor and the estimator was assumed to be perfect (noiseless), in this work an additive
noise channel with fixed power constraint is considered; hence, the sensor has to encode its message
before transmission. Under some technical assumptions, we obtain the optimal encoding and estimation
policies within the piecewise affine class in conjunction with the optimal transmission schedule. The
impact of the presence of a noisy channel is analyzed numerically based on dynamic programming. This
analysis yields some rather surprising results such as a phase-transition phenomenon in the number of
used transmission opportunities, which was not encountered in the noiseless communication setting.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The communication scheduling and remote state estimation
problem arises in the applications of wireless sensor networks,
such as environmental monitoring and networked control sys-
tems. As an example of environmental monitoring, researchers at
the National Aeronautics and Space Administration (NASA) Earth
Science group are interested in monitoring the evolution of the
soil moisture, which is used in weather forecast, ecosystem pro-
cess simulation, etc. (Shuman et al., 2010). In order to achieve
that goal, the sensor networks are built over an area of interest.
The sensors collect data on the soil moisture and send them to
the decision unit at NASA via wireless communication. The de-
cision unit at NASA forms estimates on the evolution of the soil
moisture based on the messages received from the sensors.
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Similarly, in networked control systems, where the objective is to
control some remote plants, sensor networks are built to measure
the states of the remote plants. Sensors transmit their measure-
ments to the controller via awireless communication network, and
the controller estimates the state of the remote plant and generates
a control signal based on that estimate (Hespanha, Naghshtabrizi,
& Xu, 2007). In both scenarios, the quality of the remote state
estimation strongly affects the quality of decision making at the
remote site, that is, weather prediction or control signal genera-
tion. The networked sensors are usually constrained by limits on
power (Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002). They
are not able to communicate with the estimator at every time step
and thus, the estimator has to produce its best estimate based
on the partial information received from the sensors. Therefore,
the communication between the sensors and the estimator should
be scheduled judiciously, and the estimator should be designed
properly, so that the state estimation error is minimized under the
communication constraints.

Research on the general sensor scheduling problem dates back
to the 1970s. In one of the earliest works (Athans, 1972), the
problem formulation is such that only one out of several sensors
canbe selected at each instant of time to observe the output of a lin-
ear stochastic system. Using the measurements over a finite time
interval, the goal is to form prediction on some future state of the
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system. Furthermore, each sensor is associatedwith a certainmea-
surement cost. The author proposed an off-line deterministic sen-
sor scheduling strategy that minimizes the sum of measurement
cost over the time interval and prediction error. Gupta, Chung, B.
Hassibi, andMurray (2006) studied the sensor scheduling problem
over infinite timehorizon. Similar to the problem in Athans (1972),
only one sensor can be selected at each instant of time. However,
there is no measurement cost associated with each sensor. The
authors proposed an off-line stochastic sensor scheduling strategy
such that the expected steady state estimation error is minimized.
Yang and Shi (2011) studied the off-line sensor scheduling problem
where there is only one sensor observing the state of a linear
stochastic system. The sensor can communicate with the remote
estimator only a limited number of times. The objective was to
minimize the cumulative estimation error over a finite time hori-
zon. It was shown that the optimal sensor scheduling strategy is
to distribute the limited communication opportunities uniformly
over the time horizon. The authors of the papers discussed above
considered off-line sensor scheduling problems. ‘‘Off-line sensor
scheduling’’ means the sensor is scheduled to take observation or
conduct communication based on some a priori information about
the system (e.g. statistics of random variables, system matrices).
The on-line information (e.g. sensor’s observation, battery’s energy
level) is not taken into account when making schedules. Some
other selected work on off-line sensor scheduling problems can be
found in Mo, Garone, Casavola, and Sinopoli (2011), Ren, Cheng,
Chen, Shi, and Sun (2013) and Shi and Zhang (2012).

With the advances in hardware devices, sensors are endowed
with stronger computational capabilities. Consequently, the sen-
sors are able to make schedules based on all the information
they have (a priori information as well as on-line information),
which motivates the formulation of on-line sensor scheduling
problems. Åström and Bernhardsson (2002) considered a state
estimation problem with a first-order stochastic system. They
compared the estimation error over infinite time horizon obtained
by periodic sampling and threshold event-triggered sampling. The
periodic sampling is one of the off-line sensor scheduling strategies
while the threshold event-triggered sampling is one of the on-line
sensor scheduling strategies. They showed that the threshold
event-triggered sampling, which is also called ‘‘threshold-based
communication strategy’’, leads to better performance in state esti-
mation compared with periodic sampling. The global optimality of
threshold-based communication strategy in this context is proved
later by Nar and Başar (in press). Imer and Başar (2010) consid-
ered the on-line sensor scheduling and remote state estimation
problem over a finite time horizon. In the formulation, the sensor
is restricted to communicate only a limited number of times.
By considering the communication strategies within the class of
threshold-based strategies, the paper has shown that there exists
a unique threshold-based communication strategy achieving the
best performance on remote state estimation. Furthermore, the
optimal threshold can be computed by solving a dynamic program-
ming equation. Bommannavar and Başar (2008) later extended
the result of Imer and Başar (2010) to multi-dimensional systems.
The continuous-time version of the problem in Imer and Başar
(2010) has been studied byRabi,Moustakides, andBaras (2006). Xu
and Hespanha (2004) considered the networked control problem
involving state estimation and communication scheduling, which
can be viewed as a sensor scheduling and remote estimation
problem. They fixed the estimator to be Kalman-like and designed
an event-triggered sensor that minimizes the time average of the
sum of the communication cost and estimation error over infi-
nite time horizon. They showed that the optimal communication
strategy is deterministic and stationary, and is a function of the
estimation error. Wu, Jia, Johansson, and Shi (2013) considered the
sensor scheduling and estimation problem subject to constraints

on the average communication rate over infinite time horizon. The
authors assumed that the sensor has noisy observations on the
system state. By restricting the sensor scheduling strategies to the
threshold event-triggered class, they derived the exact minimum
mean square error (MMSE) estimator. However, the exact MMSE
estimator is nonlinear and thus computationally intractable. Under
a Gaussian assumption on the a priori distribution, the authors
derived an approximate MMSE estimator, which is Kalman-like.
Based on the approximated MMSE estimator, the authors derived
conditions on the thresholds so that the average sensor communi-
cation rate will not exceed its upper bound. You and Xie (2013)
extended the work in Wu et al. (2013) by deriving conditions
on the thresholds so that the estimator is stable. Han, Mo, Wu,
Weerakkody, Sinopoli, and Shi (2015) showed that if the sensor
is fixed to apply some stochastic event-triggered strategy, then
the exact MMSE estimator is Kalman-like. Other selected work
on remote estimation with event-based sensor operations can
be found in Shi, Elliott, and Chen (2016) and Weerakkody, Mo,
Sinopoli, Han, and Shi (2013). The work in Han et al. (2015),
Wu et al. (2013) and You and Xie (2013) can also be viewed as
Kalman-filtering with scheduled observations, which is related to
Kalman-filtering with intermittent observations studied in Sinop-
oli, Schenato, Franceschetti, Poolla, Jordan, and Sastry (2004) and
You, Fu, and Xie (2011).

The approaches of Wu et al. (2013) and Xu and Hespanha
(2004) involved fixing the communication strategies or estimation
strategies to be of a certain type and then deriving the correspond-
ing optimal estimation strategies and communication strategies,
respectively. The approach of Imer and Başar (2010), on the other
hand, is to derive the jointly optimal communication strategies
and estimation strategies. Similarly, Lipsa andMartins (2011) con-
sidered the sensor scheduling and remote estimation problem
where the sensor is not constrained by communication times but is
charged a communication cost. They proposed a threshold event-
triggered sensor and a Kalman-like estimator and proved that the
proposed sensor and estimator are jointly optimal, minimizing
the sum of communication cost and estimation error over a finite
time horizon. Nayyar, Başar, Teneketzis, and Veeravalli (2013)
considered a similar problem where the sensor is equipped with
an energy harvesting sensor. In the work of Nayyar et al. (2013),
the problem formulation is such that the sensor is constrained by
the energy level of the battery and is also charged a communication
cost. It is shown in Nayyar et al. (2013) that an energy dependent
threshold event-triggered sensor and a Kalman-like estimator are
jointly optimal. Hence, the result of Nayyar et al. (2013) can be
viewed as generalization of the results of Imer and Başar (2010)
and Lipsa and Martins (2011). In both Lipsa and Martins (2011)
and Nayyar et al. (2013), majorization theory was used to prove
the optimality of the respective results, which is closely related to
the approach in Hajek, Mitzel, and Yang (2008).

It is worth drawing attention to the two different types of
constraints that arise in the works mentioned above – hard and
soft constraints – as featured in the problem setups of Imer and
Başar (2010) and Lipsa andMartins (2011). In the problem of Imer
and Başar (2010), the sensor can only communicate for a pre-
specified number of times. Such a communication constraint is
called hard constraint. In the work of Lipsa and Martins (2011),
however, the sensor is charged a communication cost. This kind of
communication constraint is called soft constraint. In the problem
with hard constraint, the communication strategy must take the
remaining communication opportunities as a variable and sched-
ule no communication if there is no remaining opportunity. Such
communication strategies guarantee that the number of transmis-
sions made over the time horizon of interest will not exceed the
given constraint. In the problem with soft constraint, however,
the sensor is not constrained by the number of transmissions,
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therefore the communication strategy need not take the remaining
communication opportunities (which is always equal to the re-
maining time steps) as a variable. Therefore, the results obtained in
one problem cannot be applied directly to the other. For example,
if we apply the communication strategy obtained in Lipsa and
Martins (2011) to the problemof Imer and Başar (2010), then there
exists a positive probability that the sensor decides to communi-
cate at every instant of time,which certainlywould violate the hard
constraint on communication times. A detailed discussion on the
difference between optimization problems with soft constraints
and hard constants can be found in Gupta, Langbort, and Başar
(2010) and Gupta, Nayyar, Langbort, and Başar (2012).

In this paper, we extend the lines of research in Imer and
Başar (2010), Lipsa and Martins (2011) and Nayyar et al. (2013). In
previous works, the communication between the sensor and the
estimator was assumed to be perfect (no channel noise), which
maynot be that realistic, even though itwas an important first step.
This paper investigates the effect of communication channel noise
on the design of optimal sensor scheduling and remote estimation
strategies. The paper consists of two parts: In the first part, we
consider a discrete time sensor scheduling and remote estimation
problemwith a soft constraint. At each time step, the sensormakes
a perfect observation on the state of an independent identically
distributed (i.i.d.) source. Next, the sensor decides whether to
transmit its observation to the remote estimator or not. The sensor
has a soft communication constraint (i.e., the sensor is charged a
cost for each transmission). Since the communication channel is
noisy, the sensor encodes the message before transmitting it to
the estimator. The remote estimator generates a real-time estimate
on the state of the source based on the noise corrupted messages
received from the sensor. The estimator is charged for estimation
error. Our goal is to design the communication scheduling strategy
and encoding strategy for the sensor, and the estimation strategy
(decoding strategy) for the estimator, to minimize the expected
value of the sum of communication cost and estimation cost over
the time horizon. Our solution consists of a threshold-based com-
munication scheduling strategy, and a pair of piecewise linear
encoding/decoding strategies. We prove optimality under some
technical assumptions. Then, we extend the result to the problem
with a hard constraint. Using a dynamic programming approach,
we obtain the optimal communication scheduling, encoding and
decoding strategies. Beyond the qualitatively expected results, we
notice some rather surprising effects of the noisy communication
considerations in this class of remote estimation problems. For
example, over a time horizon T and with a hard transmission
limit, N ≤ T , if the state realizations were so that at time step
K , the sensor has used only N − T + K transmissions out of
N , the intuitively appealing solution to the noiseless variation of
the problem was to transmit from that time on all the observed
state realizations without any thresholding, i.e., the threshold is
effectively set to zero for samples at time steps K + 1, . . . , T .
However, in the noisy setting, we have noticed that this is not the
case, the sensor may not use all the transmission opportunities
left. This is due to the fact that threshold information – that is
whether or not the state sample belongs to an interval – may
be more valuable than a ‘‘noisy’’ observation of the state. In fact,
depending on the signal-to-noise ratio (SNR) of the channel, there
is a fixed number of useful (in average) number of transmissions,
and allowing transmissionsmore than this number, on the average,
does not help decrease the expected mean square error (MSE). In
all, the major contributions of this paper are as follows:

(1) We formulate two optimization problems involving an ad-
ditive noise channel under two types of communication
constraints.

(2) We show that if the source and noise processes are i.i.d.,
then the optimization problem with soft constraint can be
simplified to a single-stage problem. Furthermore, the opti-
mization problem with hard constraint can be converted to
a single-stage problem with soft constraint.

(3) Under some technical assumptions, we show that the opti-
mal communication scheduling policy is a threshold-based
one with a unique optimal threshold.

(4) We generate numerical results for the problem with hard
constraint. We uncover two surprising facts: first, the
optimal estimation error over the time horizon remains
constant if the number of communication opportunities ex-
ceeds some threshold. In other words, the communication
opportunities above the threshold are redundant in terms
of reducing the estimation error. Second, the sensormay not
use all the communication opportunities by the end of the
timehorizon.Wealso analyze the reasons for the occurrence
of these two interesting phenomena.

The remainder of the paper is organized as follows: in Sec-
tion 2, we formulate the optimization problems with soft/hard
constraints. In Sections 3 and 4, we present the main results for
problemswith soft/hard constraints. In Section 5, we present some
numerical results for the problem with hard constraint. Finally, in
Section 6, we draw concluding remarks and discuss future work.

The authors have five conference papers on the general topic of
this paper, listed as Gao, Akyol, and Başar (2015a, b, 2016a, b, c).
The specific topics and results of the last three, that is Gao et al.
(2016a)–Gao et al. (2016c), are beyond the scope of this paper, as
explained in Section 6 (Conclusions). The first two, that is (Gao et
al., 2015a, b), have some overlap as far as the problem formulations
go, but the current paper substantially improves upon the results
in these two papers, as explained in Remark 8 in Section 4.

2. Problem formulation

2.1. System model

Consider, as depicted in Fig. 1, a discrete time communication
scheduling and remote estimation problem over a finite-time hori-
zon, that is, t = 1, 2, . . . , T . There is one sensor, one encoder and
one remote estimator (which is also called ‘‘decoder’’). A source
process {Xt} is a one-dimensional, independent, and identically
distributed (i.i.d.) stochastic process, which has density pX . At
time t , the sensor observes Xt . Since the sensor is assumed to
have communication constraint (which will be introduced later),
it needs to decide whether or not to transmit its observation. Let
Ut ∈ {0, 1} be the sensor’s decision at time t , where Ut = 1
stands for transmission and Ut = 0 stands for no transmission.
The communication channel is assumed to be noisy. Hence, if
the sensor decides to transmit its observation, it sends Xt to the
encoder. If the sensor decides not to transmit, it does not send
anything to the encoder but a free symbol ϵ stands for its decision.
Denote by X̃t the message received by the encoder; then

X̃t =

{
Xt , if Ut = 1
ϵ, if Ut = 0.

If the encoder receives Xt from the sensor, it sends an encoded
message Yt to the communication channel. The encoder operates
under the average power constraint: E[Y 2

t |Ut = 1] ≤ PT , where
the expectation is taken over Yt . Furthermore, PT is known and is
invariant of time. The encodedmessage Yt is corrupted by an addi-
tive channel noise Vt . The noise process {Vt} is a one-dimensional
i.i.d. stochastic process with density pV , which is independent of
{Xt}. When sending Yt to the communication channel, the encoder
is able to transmit the sign of Xt to the decoder via a side channel,
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Fig. 1. System model.

which is assumed to be noise-free. If the encoder receives ϵ from
the sensor, it sends zero to both the communication channel and
the side channel. Consequently, the decoder can deduce the sen-
sor’s decision from themessage conveyed via the side channel .We
use Ỹt and St to denote the messages received by the decoder from
the communication channel and the side channel, respectively,
that is

Ỹt =

{
Yt + Vt , if Ut = 1
Vt , if Ut = 0 St =

{
sgn(Xt ), if Ut = 1
0, if Ut = 0.

After receiving Ỹt and St , the decoder produces an estimate on Xt ,
denoted by X̂t . The decoder is charged for distortion in estimation.
We assume that the distortion function ρ(Xt , X̂t ) is the squared
error, (Xt − X̂t )2.

2.2. Communication constraint

The sensor is said to have a soft constraint if there is a non-
negative cost function associated with Ut , denoted by C(Ut ). Here,
the cost function is assumed to have the form of

C(Ut ) = cUt =

{
0, if Ut = 0
c, if Ut = 1,

where c is called the communication cost (c > 0), which is known
and is invariant of time. The sensor is said to have a hard constraint
if it is restricted to use the noisy channel for no more than N times
(N < T ).

2.3. Decision strategies

Assume that at time t , the sensor hasmemory on all its observa-
tions up to t , denoted by X1:t , and all the decisions it hasmade up to
t − 1, denoted by U1:t−1. The sensor determines whether or not to
transmit its observation at time t , based on its current information
(X1:t ,U1:t−1), namely

Ut = ft (X1:t ,U1:t−1),

where ft is the communication scheduling policy at time t , and
f = {f1, f2, . . . , fT } is the communication scheduling strategy.

Similarly, at time t , the encoder hasmemory on all themessages
received from the sensor up to t , denoted by X̃1:t , and all the
messages it has sent to the communication channel and the side
channel up to t − 1, denoted by Y1:t−1 and S1:t−1, respectively.
The encoder generates the encoded message at time t , based on
its current information (X̃1:t , Y1:t−1, S1:t−1), namely

Yt = gt (X̃1:t , Y1:t−1, S1:t−1),

where gt is the encoding policy at time t , and g = {g1, g2, . . . , gT }
is the encoding strategy.

Finally, we assume that at time t , the decoder has memory on
all the messages received from the communication channel up to
t , denoted by Ỹ1:t , and all the messages received from the side
channel up to t , which are S1:t . The decoder generates the estimate
at time t , based on its current information (Ỹ1:t , S1:t ), namely

X̂t = ht (Ỹ1:t , S1:t ),

where ht is the decoding policy at time t , and h = {h1, h2, . . . , hT }

is the decoding strategy.

Remark 1. Although we do not assume that the decoder has
memory on its previous estimates up to t , yet it can deduce them
from (Ỹ1:t−1, S1:t−1) and h1, h2, . . . , ht−1.

For simplicity, we call the sensor, the encoder, and the decoder
as decision makers. Correspondingly, we call the communication
scheduling policy (strategy), encodingpolicy (strategy), anddecod-
ing policy (strategy) as decision policies (strategies).

2.4. Optimization problem

Consider the settings described above, with the time horizon
T , the probability density functions pX and pV , and the power
constraint PT as given.
Optimization problem with soft constraint: Given the communi-
cation cost c , determine (f, g,h) minimizing the functional

J(f, g,h) = E

{
T∑

t=1

cUt + (Xt − X̂t )2
}

.

Optimization problem with hard constraint: Given the number of
transmission opportunities N , determine (f, g,h) minimizing, un-
der the hard constraint, the cost functional

J(f, g,h) = E

{
T∑

t=1

(Xt − X̂t )2
}

.

3. Optimization problem with soft constraint

To beginwith, we show that the optimization problemwith soft
constraint can be simplified to a single-stage problem, as described
in Theorem 1.

Theorem 1. Consider the optimization problem in Section 2.4 with
the soft constraint.

(1) Without loss of optimality, one can restrict all the decision
makers to apply the decision policies (ft , gt , ht ) in the forms of

Ut = ft (Xt ), Yt = gt (X̃t ), X̂t = ht (Ỹt , St ). (1)

(2) Without loss of optimality, one can restrict all the decision
makers to apply stationary decision strategies (f, g,h), i.e., f =

{f , f , . . . , f }, g = {g, g, . . . , g}, and h = {h, h, . . . , h}.

Before proving Theorem 1, we first introduce the following no-
tations. For any 1 ≤ a ≤ b ≤ T , let fa:b, ga:b,ha:b denote the subsets
of f, g,h such that fa:b = {fa, fa+1, . . . , fb}, ga:b = {ga, ga+1, . . . , gb},
and ha:b = {ha, ha+1, . . . , hb}. Furthermore, let Ist , Iet , Idt de-
note the information about the past system states available to
the sensor, the encoder, and the decoder, respectively, at time t
(t > 1), i.e., Ist = {X1:t−1,U1:t−1}, Iet = {X̃1:t−1, Y1:t−1, S1:t−1}, and
Idt = {Ỹ1:t−1, S1:t−1}. Let It be union of Ist , Iet , and Idt , i.e., It =

{X1:t−1,U1:t−1, X̃1:t−1, Y1:t−1, S1:t−1, Ỹ1:t−1}.

Proof. It is easy to see the validity of the following sequence of
equalities:

inf
f,g,h

J(f, g,h)

= inf
f,g,h

E

{
T∑

t=1

cUt + (Xt − X̂t )2
}

= inf
f1,g1,h1

E

{
cU1 + (X1 − X̂1)2
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+ inf
f2:T ,g2:T ,h2:T

E

{
T∑

t=2

cUt + (Xt − X̂t )2
}}

= inf
f1,g1,h1

E
{
cU1 + (X1 − X̂1)2 + inf

f2,g2,h2
E
{
cU2 + (X2

− X̂2)2 + · · · + inf
fT ,gT ,hT

E
{
cUT + (XT − X̂T )2

}
. . .

}}
.

Then, at time t = T , the optimization problem is to design
(fT , gT , hT ) minimizing

J1(fT , gT , hT ) := E
{
cUT + (XT − X̂T )2

}
,

call it Problem 1. Recall that the decisions at time T are generated
by UT = fT (XT , IsT ), YT = gT (X̃T , IeT ), X̂T = hT (ỸT , ST , IdT ). We
will show that using information about the past (IsT , IeT , IdT ) when
making decisions cannot help improve the performance (that is, re-
duce the expected cost). Consider another problem, call it Problem
2, where IT is available to all the decisionmakers, and one needs to
design (f ′

T , g
′

T , h
′

T ) minimizing

J2(f ′

T , g
′

T , h
′

T ) := E
{
cUT + (XT − X̂T )2

}
,

where UT = f ′

T (XT , IT ), YT = g ′

T (X̃T , IT ), X̂T = h′

T (ỸT , ST , IT ). Since
the sensor, the encoder, and the decoder can always ignore the
redundant information and behave as if they only know IsT , IeT , IdT ,
respectively, the optimal cost in Problem2 is upper boundedby that
in Problem 1, i.e.,

inf
(f ′T ,g ′

T ,h′
T )
J2(f ′

T , g
′

T , h
′

T ) ≤ inf
(fT ,gT ,hT )

J1(fT , gT , hT ).

Similarly, consider a third problem, call it Problem 3, where
IsT , IeT , IdT are not available to the sensor, the encoder, and the
decoder, respectively. One needs to design (f ′′

T , g ′′

T , h′′

T ) to minimize

J3(f ′′

T , g ′′

T , h′′

T ) := E
{
cUT + (XT − X̂T )2

}
,

where UT = f ′′

T (XT ), YT = g ′′

T (X̃T ), X̂T = h′′

T (ỸT , ST ). By a similar
argument as above, the system in Problem 1 cannot performworse
than the system in Problem 3. Hence,

inf
(fT ,gT ,hT )

J1(fT , gT , hT ) ≤ inf
(f ′′T ,g ′′

T ,h′′
T )
J3(f ′′

T , g ′′

T , h′′

T ).

Let us come back to Problem 2. One can observe that the com-
munication cost c , the distortion function ρ(·, ·), and the power
constraint of the encoder do not depend on IT . Furthermore, since
{Xt} and {Vt} are i.i.d. stochastic processes, XT and VT are also inde-
pendent of IT . Therefore, there is no loss of optimality in restricting
UT = f ′

T (XT ), YT = g ′

T (X̃T ), X̂T = h′

T (ỸT , ST ), and thus

inf
(f ′T ,g ′

T ,h′
T )
J2(f ′

T , g
′

T , h
′

T ) = inf
(f ′′T ,g ′′

T ,h′′
T )
J3(f ′′

T , g ′′

T , h′′

T ).

The equality above indicates that in Problem 1, the sensor, the
encoder, and the decoder can safely ignore their information about
the past, namely IsT , IeT , and IdT , when making decisions.

Since (fT , gT , hT ) do not take IT as a parameter, the design of
(fT , gT , hT ) is independent of the design of (f1:T−1, g1:T−1, h1:T−1).
Consequently, the problem can be viewed as a (T − 1)-stage
problem and a single-stage problem. By induction, we can show
that (f1, g1, h1), (f2, g2, h2), . . . , (fT , gT , hT ) can be designed inde-
pendently, and (ft , gt , ht ) is designed to minimize the stage-wise
cost E{cUt + (Xt − X̂t )2}. Hence, the optimal decision policies
(ft , gt , ht ) are in the formof (1). Furthermore, since {Xt} and {Vt} are
i.i.d. stochastic processes, the optimal decision policies (ft , gt , ht )
should be the same for all t = 1, 2, . . . , T . □

By Theorem 1, the optimization problem with soft constraint
can be reduced to a ‘‘single-stage’’ problem. Therefore, for simplic-
ity wewill suppress the subscript for time in all the expressions for
the rest of this section. To present our main results for the single-
stage problem, we need the following four assumptions.

Assumption 1. The source density pX is nonatomic, even, and log-
concave with support R. Furthermore, pX is continuously differen-
tiable on (0, ∞) (and on (−∞, 0) by symmetry).

Remark 2. There are several probability density functions satis-
fying Assumption 1, e.g., zero-mean Gaussian distribution, zero-
mean Laplace distribution, and a few others. For simplicity, we
assume here that pX has support R. However, the results also hold
for the source density with support (−a, a), a > 0, e.g., uniform
distribution. In this case, we require that pX is continuously differ-
entiable on (0, a).

Given any communication scheduling policy f , let T f
0 , T

f
1+, and

T f
1− be the non-transmission region, the positive transmission region

and the negative transmission region, corresponding to f , where

T f
0 := {x ∈ R|f (x) = 0}, T f

1+ := {x > 0|f (x) = 1},
T f
1− := {x < 0|f (x) = 1}.

Note that T f
0 , T

f
1+, and T f

1− may not be connected regions. Then, we
make the following assumption on the communication scheduling
policy.

Assumption 2. The sensor is restricted to apply the communica-
tion scheduling policy f satisfying

E[X |X ∈ T f
1−] < E[X |X ∈ T f

0 ] < E[X |X ∈ T f
1+]. (2)

Remark 3. There is a wide class of communication scheduling
policies satisfying inequality (2). For example, given any communi-
cation scheduling policy f symmetric about 0, i.e., f (x) = f (−x) ∈

{0, 1}, and any even source density function pX , we have

E[X |X ∈ T f
1−] < 0 = E[X |X ∈ T f

0 ] < E[X |X ∈ T f
1+].

Then, Assumption 2 is satisfied.

Assumption 3. The communication channel noise V has zero
mean, and finite variance, denoted by σ 2

V .

Assumption4. The encoder and the decoder are restricted to apply
piecewise affine policies:

g(X̃) =

{
Sα(S) (X − E [X |U = 1, S]) , if U = 1
0, if U = 0

h(Ỹ , S) =

⎧⎨⎩S
1

α(S)
γ

γ + 1
Ỹ + E [X |U = 1, S] , if U = 1

E[X |U = 0], if U = 0

where γ = PT/σ 2
V is the signal-to-noise ratio (SNR), α(S) =

√
PT/Var(X |U = 1, S) is the amplifying ratio, and Var(X |U = 1, S)

is the conditional variance.

It can be checked that when applying the encoding policy de-
scribed above, the power consumption of the encoder meets the
average power constraint (more details can be found in Gao, Akyol,
& Başar, 2016d). Moreover, the events U = 0, (U = 1, S = −1),
and (U = 1, S = 1) are equivalent to the events X ∈ T f

0 ,
X ∈ T f

1−, and X ∈ T f
1+, respectively. Therefore, the encoding and

decoding policies (g, h) are induced by the source density pX and
the communication scheduling policy f . For simplicity, we use J(f )
instead of J(f , g, h) to denote the cost functional in the rest of this
section.
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Remark 4. Note that the assumption of piece-wise affine encoding
policies originates from a prior work (Akyol, Rose, & Başar, 2015),
which analyzed amemoryless zero-sum jamming game between a
pair of transmitter and receiver and an adversary that generates an
additive channel noise subject to second order (power) statistical
constraints. It was shown in Akyol et al. (2015) that the saddle-
point equilibrium associated with this zero-sum game is achieved
by affine encoding/decoding policies for the transmitter–receiver
pair. Here, we utilize such piece-wise affine policies, not only
because they facilitate a tractable analysis but also because they
possess such min–max robustness properties (see Akyol et al.,
2015 for more details).

Under Assumptions 1–4, the optimal communication schedul-
ing policy turns out to be unique, threshold-based and symmetric
around zero, as stated in Theorem 2.

Theorem 2. Consider the single-stage problem under Assumptions
1–4. Then, the optimal communication scheduling policy is of the
threshold type:

f (x) =

{
0, if |x| < β

1, otherwise

whereβ > 0 is the threshold. Furthermore, there exists a unique value
β∗ minimizing the cost functional J(f ) among all such thresholds.

To prove Theorem 2, we need the following definitions and
lemmas. We first introduce a quantization problem.

Quantization Problem: The problem is one of quantizing the
realizations (denoted by x) of a real-valued random variable (de-
noted by X) to N codepoints (N is finite and is known) according
to some quantization rule (or quantizer) Q , i.e,

Q (x) = qi, if x ∈ Si, i ∈ {1, 2, . . . ,N },

where S1, S2, . . . , SN are called quantization regions and q1, q2,
. . . , qN are the corresponding codepoints. Note that S1, S2, . . . , SN
are mutually disjoint sets and their union equals R. The distortion
error between a realization x and the its quantized value Q (x) is
ρ(|x − Q (x)|), where ρ : [0, ∞) → [0, ∞) is called the distortion
function. The performance of the quantizer Q is evaluated by its
mean distortion error, denoted by D(Q ), i.e.,

D(Q ) := E
[
ρ
(
|X − Q (X)|

)]
.

Then, given the probability distribution of X , the optimiza-
tion problem is to design a quantizer Q = Q ∗ (i.e., design
{S1, S2, . . . , SN } and {q1, q2, . . . , qN }) that minimizes D(Q ).

We recall here a result on the regularity of the optimal quan-
tizer, as described in Lemma 1. The lemma says that given any
quantizer, we can build another quantizer achieving no larger
mean distortion error, by rearranging the quantization regions.
Furthermore, the rearranged quantization regions are connected
and have the same probability measure with the original quanti-
zation regions.

Lemma 1 (György & Linder, 2002, Theorem 1 and Corollary 1).
Assume that the source X has nonatomic distribution pX , and ρ :

[0, ∞) → [0, ∞) is convex and non-decreasing. Then, for any N -
level quantizer Q with quantization regions {S1, S2, . . . , SN } and the
corresponding codepoints {q1, q2, . . . , qN }, there exists a quantizer
Q̂ with quantization regions {Ŝ1, Ŝ2, . . . , ŜN } and the corresponding
codepoints {q̂1, q̂2, . . . , q̂N } such that

(1) Ŝi is convex, and P(X ∈ Ŝi) = P(X ∈ Si), for all i = 1, . . . ,N .
(2) If qi < qj, then Ŝi < Ŝj, i.e., x < y for any x ∈ Ŝi and y ∈ Ŝj.
(3) D(Q̂ ) ≤ D(Q ).

Now returning to our problem, for any communication schedul-
ing policy f , we can construct a three-level quantizer, denoted by
Q f , with quantizing regions (T f

0 , T
f
1+, T

f
1−) and the corresponding

codepoints (E[X |X ∈ T f
0 ], E[X |X ∈ T f

1+], E[X |X ∈ T f
1−]). Let D(Q f )

be the mean squared distortion of Q f , i.e.,

D(Q f )
= E

[(
X − Q f (X)

)2]
=

∑
i∈I

E
[(
X − E[X |X ∈ T f

i ]
)2

|X ∈ T f
i

]
P(X ∈ T f

i )

=

∑
i∈I

Var(X |X ∈ T f
i ) P(X ∈ T f

i ),

where I = {0, 1+, 1−}. By Lemma 1, we have the following result.

Lemma2. Suppose the source density pX is nonatomic and even. Then,
for any communication scheduling policy f satisfying Assumption 2,
we can construct a threshold-based communication scheduling policy
f (1) such that

(1) T f (1)
0 = (−β2, β1), T

f (1)
1+ = (β1, ∞), and T f (1)

1− = (−∞, −β2),
where β1, β2 > 0 are thresholds.

(2) P(X ∈ T f (1)
i ) = P(X ∈ T f

i ), for all i ∈ {0, 1+, 1−}.
(3) D(Q f (1) ) ≤ D(Q f ).

Proof. By Lemma 1, given a three-level quantizer Q f , there exists
a three-level quantizer Q̂ with quantization regions (Ŝ0, Ŝ1+, Ŝ1−)
and corresponding codepoints (q̂0, q̂1+, q̂1−) such that

(1) Ŝi is convex, and P(X ∈ Ŝi) = P(X ∈ T f
i ), for all i ∈

{0, 1+, 1−}.
(2) Ŝ1− < Ŝ0 < Ŝ1+.
(3) D(Q̂ ) ≤ D(Q ).

The second item holds since E[X |X ∈ T f
1−] < E[X |X ∈ T f

0 ] <

E[X |X ∈ T f
1+] (Assumption 2). Note that since T f

1+ ⊆ (0, ∞),
T f
1− ⊆ (−∞, 0), and the source density pX is even, we have

P(X ∈ Ŝ1+) = P(X ∈ T f
1+) ≤

1
2
,

P(X ∈ Ŝ1−) = P(X ∈ T f
1−) ≤

1
2
.

Combining the above inequalities with the second item, we have
Ŝ1+ = (β1, ∞), Ŝ1− = (−∞, −β2), and Ŝ0 = (−β2, β1) for some
β1, β2 ≥ 0. We now construct a threshold-based communication
scheduling policy f (1) by letting T f (1)

i = Ŝi, i ∈ {0, 1+, 1−}.
Since the distortion function is the squared error, the optimal code-
points corresponding to quantization regions (T f (1)

0 , T f (1)
1+ , T f (1)

1− ) are
(E[X |X ∈ T f (1)

0 ], E[X |X ∈ T f (1)
1+ ],E[X |X ∈ T f (1)

1− ]). Hence, we have
D(Q f (1) ) ≤ D(Q̂ ) ≤ D(Q f ). □

Note that f (1) constructed in Lemma 2 may or may not be sym-
metric around zero.Wenowhave the following proposition,which
states that based on f (1), we can further construct a threshold-
based policy f (2), which is symmetric around zero and has no larger
mean squared distortion. Furthermore, the probability measure
over the non-transmission region of f (2) is the same as that of f (1).

Proposition 1. Suppose the source density pX satisfies Assumption 1.
Then, for any communication scheduling policy f satisfying Assump-
tion 2, we can construct a threshold-based communication scheduling
policy f (2) symmetric around zero such that

(1) T f (2)
0 = (−β, β), T f (2)

1+ = (β, ∞), T f (2)
1− = (−∞, −β), where

β > 0.
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(2) P(X ∈ T f (2)
0 ) = P(X ∈ T f

0 ).
(3) D(Q f (2) ) ≤ D(Q f ).

To prove Proposition 1, we need to apply results frommajoriza-
tion theory, introduced below. Given a Borel measurable set A, we
use Aσ to denote its symmetric rearrangement, i.e., Aσ

= [−a, a],
andL(Aσ ) = L(A) (same Lebesguemeasure). Given a non-negative
integrable function p : R → R, we use pσ to denote its symmetric
rearrangement, which is described as follows:

pσ (x) :=

∫
∞

0
1{z∈R|p(z)≥ρ}σ (x)dρ, x ∈ R.

1{z∈R|p(z)≥ρ}σ (x) is the indicator function onwhether x is an element
of {z ∈ R|p(z) ≥ ρ}

σ or not, i.e.,

1{z∈R|p(z)≥ρ}σ (x) =

{
1, if x ∈ {z ∈ R|p(z) ≥ ρ}

σ

0, otherwise.

Definition 1. Given two probability densities p and q defined on
R, we say p majorizes q, denoted by p ≻ q, if∫

|x|<t
qσ (x)dx ≤

∫
|x|<t

pσ (x)dx, for all t ≥ 0.

Lemma 3 (Lipsa & Martins, 2011, Lemma 4). Let pX and pX ′ be
probability density functions defined onR. Assume that pX is even and
log-concave, and pX ≻ pX ′ . Then,∫

∞

−∞

x2pX (x)dx ≤

∫
∞

−∞

(x − y)2pX ′ (x)dx, for all y ∈ R,

or equivalently, Var(X) ≤ Var(X ′).

Remark 5. Lemma 4 in Lipsa and Martins (2011) assumes that pX
is even, quasi-concave, and there exists b ∈ R such that pX is non-
decreasing on (−∞, b] and non-increasing on (b, ∞). Note that a
positive log-concave function is also quasi-concave. Moreover, it
can be shown that if pX is even and log-concave, then pX is non-
decreasing on (−∞, 0] and non-increasing on (0, ∞). In view of
this, Lemma 3 is a slightly modified version of Lemma 4 in Lipsa
and Martins (2011).

Lemma 4 (Lipsa & Martins, 2011, Lemma 2). Let pX and pX ′ be
probability density functions defined onR. Assume that pX is even and
log-concave, and pX ≻ pX ′ . Let A = [−τ , τ ] be any symmetric closed
interval such that

∫
A pX (x)dx > 0 and let h : R → [0, 1] be any

function such that
∫
R h(x)pX ′ (x)dx =

∫
A pX (x)dx. Then,

pX |X∈A ≻
h · pX ′∫

R h(x)pX ′ (x)dx
.

Combining Lemmas 3 and 4, we have the following lemma.

Lemma 5. Let pX be an even and log-concave density. Let A =

[−τ , τ ] be any symmetric closed interval such that
∫
A pX (x)dx > 0,

and let B be any subset of R such that
∫
B pX (x)dx =

∫
A pX (x)dx. Then,

Var(X |X ∈ A) ≤ Var(X |X ∈ B).

Proof. One can see that pX majorizes itself. Furthermore, we
choose h(x) to be the indicator function on whether x belongs to
B or not, i.e., h(x) = 1{x∈B}. Then,

∫
R h(x)pX (x)dx =

∫
B pX (x)dx =∫

A pX (x)dx. By Lemma 4, the conditional density pX |X∈A majorizes
the conditional density pX |X∈B. Since A is symmetric about zero, and
pX is even and log-concave, we have pX |X∈A is also even and log-
concave. By Lemma 3,we conclude that Var(X |X ∈ A) ≤ Var(X |X ∈

B). □

To prove Proposition 1, we also need to apply property of log-
concave distribution, which is introduced below.

Lemma 6 (Bagnoli & Bergstrom, 2005, Theorem 6). Let pX be a con-
tinuously differentiable and log-concave probability density function
defined on (a, b). Let β be a variable belonging to interval (a, b). Then,
the function GX (β), defined below, is monotone decreasing in β:

GX (β) := E[X |X > β] − β. (3)

Note that a and b in Lemma 6 can be −∞ and ∞, respectively.
We will frequently refer to this function GX (β)1 in the rest of the
paper. We next provide an extension of Lemma 6 as follows.

Lemma 7. Let pX be an even and log-concave probability density
function defined on R. Furthermore, let pX be continuously differen-
tiable on (0, ∞) and (−∞, 0), and let β taking values in (0, ∞). Then,
GX (β) as defined by (3) is monotone decreasing in β for β ∈ (0, ∞).

Proof. Let Y be a random variable such that Y = |X |. Denote by pY
the probability function of Y . Since the probability density of X , pX
is even, we have

pY (y) =

{
2pX (y), if y > 0
0, otherwise.

Since pX is continuously differentiable on (0, ∞), so is pY . Fur-
thermore, it can be shown quite readily that for any β ∈ (0, ∞),
E[Y |Y > β] = E[X |X > β]. Then, we have GY (β) = GX (β). By
Lemma 6, GY (β) is monotone decreasing in β . Hence, we conclude
that GX (β) is also monotone decreasing in β . □

We are now in a position to prove Proposition 1.

Proof of Proposition 1. By Lemma 2, given any communication
scheduling policy f (0) satisfying Assumption 2, we can construct a
threshold-based policy f (1) such that

(1) T f (1)
0 = (−β2, β1), T

f (1)
1+ = (β1, ∞), and T f (1)

1− = (−∞, −β2).
(2) P(X ∈ T f (1)

i ) = P(X ∈ T f (0)
i ), for all i ∈ {0, 1+, 1−}.

(3) D(Q f (1) ) ≤ D(Q f (0) ).

Based on policy f (1), we can construct a threshold-based policy
f (2) symmetric around zero such that

(1) T f (2)
0 = (−β, β), T f (2)

1+ = (β, ∞), T f (2)
1− = (−∞, −β).

(2) P(X ∈ T f (2)
0 ) = P(X ∈ T f (1)

0 ).

Then, we only need to show that D(Q f (2) ) ≤ D(Q f (1) ). Note that
D(Q f (1) ) and D(Q f (2) ) can be expressed as

D(Q f (1) ) =

∑
i∈I

Var(X |X ∈ T f (1)
i ) P(X ∈ T f (1)

i )

D(Q f (2) ) =

∑
i∈I

Var(X |X ∈ T f (2)
i ) P(X ∈ T f (2)

i )

where I = {0, 1+, 1−}. By Lemma 5, we obtain Var(X |X ∈ T f (2)
0 ) ≤

Var(X |X ∈ T f (1)
0 ). Since P(X ∈ T f (2)

0 ) = P(X ∈ T f (1)
0 ), we have

Var(X |X ∈ T f (2)
0 )P(X ∈ T f (2)

0 ) ≤ Var(X |X ∈ T f (1)
0 )P(X ∈ T f (1)

0 ).
Hence, we will be done if we show that∑

i∈{1+,1−}

Var(X |X ∈ T f (2)
i ) P(X ∈ T f (2)

i )

≤

∑
i∈{1+,1−}

Var(X |X ∈ T f (1)
i ) P(X ∈ T f (1)

i ).

Consider the class of threshold-based communication scheduling
policies, denoted by F , whose generic element f is in the form of

T f
0 = (−η2, η1), T f

1+ = (η1, ∞), T f
1− = (−∞, −η2),

1 GX (β) is also called themean residual lifetime.
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where η1, η2 ≥ 0, and

P(X ∈ T f
0 ) = P(X ∈ T f (0)

0 ) = k.

It is clear that f (1) and f (2) are elements ofF . Let PD(Q f ) be the sum
of the mean squared distortions of Q f over regions T f

1+ and T f
1−,

i.e.,

PD(Q f ) :=

∑
i∈{1+,1−}

Var(X |X ∈ T f
i ) P(X ∈ T f

i )

= Var
(
X |X < −η2

)
P
(
X < −η2

)
+ Var

(
X |X > η1

)
P
(
X > η1

)
= Var

(
X |X > η2

)
P
(
X > η2

)
+ Var

(
X |X > η1

)
P
(
X > η1

)
,

where the last equality holds since pX is even. We now show that
f (2) is the global minimizer of PD(Q f ) among all elements in F .
Since P(X ∈ T f

0 ) = k, we have∫
−η2

−∞

pX (x)dx +

∫
∞

η1

pX (x)dx = 1 − k.

Taking the derivatives of both sides with respect to η1, we have

dη2

dη1
·

∂

∂η2

∫
−η2

−a
pX (x)dx +

∂

∂η1

∫ a

η1

pX (x)dx = 0,

which implies that
dη2

dη1
= −

pX (η1)
pX (−η2)

= −
pX (η1)
pX (η2)

. (i)

The equality above holds because pX is even. Now taking the
derivative of PD(Q f ) with respect to η1, we have
d

dη1
PD(Q f ) =

dη2

dη1
·

∂

∂η2
Var

(
X |X > η2

)
P
(
X > η2

)
+

∂

∂η1
Var

(
X |X > η1

)
P
(
X > η1

)
.

(ii)

The second term in (ii) can be computed as (details of this deriva-
tion can be found in Gao et al., 2016d):

∂

∂η1
Var(X |X > η1) P(X > η1)

= −pX (η1) ·
(
η1 − E[X |X > η1]

)2
.

(iii)

Similarly, we can simplify the first term in (ii) to
∂

∂η2
Var

(
X |X > η2

)
P
(
X > η2

)
= −pX (η2) ·

(
η2 − E[X |X > η2]

)2
.

(iv)

Plugging (i), (iii), and (iv) into (ii), we have
d

dη1
PD(Q f )

= −
pX (η1)
pX (η2)

· −pX (η2) ·
(
η2 − E[X |X > η2]

)2
− pX (η1) ·

(
η1 − E[X |X > η1]

)2
= pX (η1)

[(
η2 − E[X |X > η2]

)2
−

(
η1 − E[X |X > η1]

)2]
= pX (η1)

(
G2
X (η2) − G2

X (η1)
)
.

By Lemma 7, GX (η) is a non-negative and monotone decreas-
ing function. Therefore, G2

X (η) is monotone decreasing, and
dPD(Q f )/dη1 ≥ 0 if η1 > η2, dPD(Q f )/dη1 = 0 if η1 = η2,
and dPD(Q f )/dη1 ≤ 0 if η1 < η2. This implies that η1 = η2
(corresponding to f (2)) is a global minimizer. □

Now we are in a position to prove Theorem 2 by applying
Proposition 1. The approach of the proof can be summarized as
follows: (1) Given any communication scheduling policy f , it can

be computed that the cost functional J(f ) consists of two parts: the
first part is the mean squared distortion of Q f , and the second part
is a cost functional in the noiseless-channel setting. (2) Based on
f , we can construct a symmetric threshold-based communication
scheduling policy f ′, which has the same probability measure on
the non-transmission region. (3) By Proposition 1, if f satisfies
Assumption 2, then the first part in the cost functional of f ′ is
lower than that of f . By Lemma 5, if the source density is even and
log-concave (which is also unimodal), then the second part in the
cost functional of f ′ is also lower than that of f . (4) Without loss
of optimality, we can consider only the class of threshold-based
policies symmetric around zero. By Lemma 7, it can be shown
that there exists a unique optimal threshold minimizing the cost
functional. We now proceed with the details of the proof of the
theorem.

Proof of Theorem 2. Consider any communication scheduling
policy f . The expected cost corresponding to f can be computed
as follows:

J(f ) = E
[
cU + (X − X̂)2

]
=

∑
i∈I

E
[
cU + (X − X̂)2|X ∈ T f

i

]
P(X ∈ T f

i ),

where I = {0, 1+, 1−}. When X ∈ T f
0 , we have U = 0 and

X̂ = E[X |X ∈ T f
0 ]. Hence,

E
[
cU + (X − X̂)2|X ∈ T f

0

]
= E

[(
X − E

[
X |X ∈ T f

0

])2
|X ∈ T f

0

]
= Var(X |X ∈ T f

0 ).

When X ∈ T f
1+, we have U = 1, and Y = α(1)

(
X − E

[
X |X ∈ T f

1+

])
.

Hence,

X̂ =
1

α(1)
γ

γ + 1
Ỹ + E

[
X |X ∈ T f

1+

]
=

γ

γ + 1
X +

1
α(1)

γ

γ + 1
V +

1
γ + 1

E
[
X |X ∈ T f

1+

]
,

where α(1) =

√
PT/Var(X |X ∈ T f

1+), and γ = PT/σ 2
V . Hence, it can

be shown that (for details of the derivation, see Gao et al., 2016d)

E
[
cU + (X − X̂)2|X ∈ T f

1+

]
= c +

1
γ + 1

Var(X |X ∈ T f
1+).

Similarly, one can compute that

E
[
cU + (X − X̂)2|X ∈ T f

1−

]
= c +

1
γ + 1

Var(X |X ∈ T f
1−).

Hence, J(f ) can be further expressed as

J(f ) = Var(X |X ∈ T f
0 )P(X ∈ T f

0 )

+
1

γ + 1
Var(X |X ∈ T f

1+)P(X ∈ T f
1+) + c P(X ∈ T f

1+)

+
1

γ + 1
Var(X |X ∈ T f

1−)P(X ∈ T f
1−) + c P(X ∈ T f

1−)

=
1

γ + 1
D(Q f ) +

γ

γ + 1
Var(X |X ∈ T f

0 )P(X ∈ T f
0 )

+ c P(X ∈ T f
1+) + c P(X ∈ T f

1−).

(v)

Given any communication scheduling policy f , we can construct
a threshold-based communication scheduling policy f ′ symmetric
around zero such that

(1) T f ′
0 = (−β, β), T f ′

1+ = (β, ∞), T f ′
1− = (−∞, −β).

(2) P(X ∈ T f ′
0 ) = P(X ∈ T f

0 ), or equivalently, P(X ∈ T f ′
1+)+P(X ∈

T f ′
1−) = P(X ∈ T f

1+) + P(X ∈ T f
1−).
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By Proposition 1 and Lemma 5, we have D(Q f ′ ) ≤ D(Q f ) and
Var(X |X ∈ T f ′

0 ) ≤ Var(X |X ∈ T f
0 ). Furthermore, we have P(X ∈

T f ′
0 ) = P(X ∈ T f

0 ) and c P(X ∈ T f ′
1+) + c P(X ∈ T f ′

1−) = c P(X ∈

T f
1+) + c P(X ∈ T f

1−). Hence, we conclude that J(f ′) ≤ J(f ), which
implies that without loss of optimality.

The result above implies that without loss of optimality, we can
restrict the search of the optimal communication scheduling policy
to the class of symmetric threshold-based type. Denote by J(β)
the expected cost corresponding to a symmetric threshold-based
communication scheduling policy with threshold β , where β ≥ 0.
By (v), J(β) can be computed as

J(β) =

∫ β

−β

x2pX (x)dx +
1

γ + 1
Var(X |X < −β)

· P(X < −β) + c
∫

−β

−∞

pX (x)dx +
1

γ + 1

· Var(X |X > β)P(X > β) + c
∫

∞

β

pX (x)dx

= 2
∫ β

0
x2pX (x)dx + 2

1
γ + 1

Var(X |X > β)

· P(X > β) + 2c
∫

∞

β

pX (x)dx,

where the second equality holds since pX is even. Taking the
derivative of J(β) with respect to β , and by (iii), we have
d
dβ

J(β) = 2pX (β)
(
β2

−
1

γ + 1

(
E[X |X > β] − β

)2
− c

)
= 2pX (β)

(
β2

−
1

γ + 1
G2
X (β) − c

)
.

Since c > 0 and GX (β) is monotone decreasing, there exists a
unique β∗ in [0, ∞) such that

β∗2
=

1
γ + 1

G2
X (β

∗) + c.

Furthermore, dJ(β)/dβ < 0 when β < β∗ and dJ(β)/dβ > 0
when β > β∗. Hence, β∗ is the unique global minimizer among
all β ≥ 0. □

Remark 6. If the density function pX has support (−a, a) and
0 < a < β∗, then dJ(β)/dβ is always negative, which implies
that the minimizing β is just a. This means that the optimal com-
munication scheduling policy is to always choose no transmission
regardless of sensor’s observation. Such a case can occur when the
communication cost is very high.

4. Optimization problem with hard constraint

To present our main results for the problem with the hard
constraint, we introduce a number of terms. First, we let Et denote
the number of remaining communication opportunities at the
beginning of the tth time interval, i.e., Et = N −

∑t−1
i=1Ui. Then,

evolution of Et is described by

Et = Et−1 − Ut−1, t ≥ 2; E1 = N . (4)

Furthermore, the communication constraint is

Ut ≤ Et , for all t = 1, 2, . . . , T . (5)

Recall that U1:t−1 is the common information shared by all the
decision makers, and hence Et is also known by all the decision
makers.

Second, we let J∗(t, Et ) be the optimal cost-to-go if the system
is initialized at time t (or equivalently, at the beginning of the tth
time interval) with Et number of communication opportunities.

Specifically, we define J∗(T + 1, ·) = 0 for any number of com-
munication opportunities.

Third, for any Et > 0, we let c(t, Et ) denote the difference
between two optimal cost-to-go, i.e.,

c(t, Et ) = J∗(t + 1, Et − 1) − J∗(t + 1, Et ).

Remark 7. c(t, Et ) can be interpreted as the opportunity cost for
choosing to communicate with the decoder rather than not to
communicate.

The following theorem ensures that without loss of optimality,
we can restrict all the decision makers to consider only their cur-
rent inputs and Et when making decisions at time t . Furthermore,
the optimal cost-to-go can be obtained via solving the dynamic
programming equation.

Theorem 3. Consider the optimization problem with hard constraint
as formulated in Section 2.4.Without loss of optimality, we can restrict
communication scheduling, encoding and decoding policies to the
forms:

Ut = ft (Xt , Et ), Yt = gt (X̃t , Et ), X̂t = ht (Ỹt , St , Et ).

Furthermore, the optimal cost-to-go J∗(t, Et ) can be obtained by solv-
ing the dynamic programming (DP) equation:

J∗(T + 1, ·) = 0
J∗(t, Et ) = inf

ft ,gt ,ht
E

{
(Xt − X̂t )2 + J∗(t + 1, Et+1)

}
. (6)

The proof of Theorem 3 is similar to that of Theorem 1, and
hence is not included here; it can be found in Gao et al. (2016d).

Regarding the DP equation (6), we have the following observa-
tions: (1) When Et = 0, the sensor has no opportunity to make
a transmission, and thus Ut = 0 regardless of the realization of
Xt . In this scenario, the sensor’s decision Ut does not contain any
hidden information about Xt . Therefore, the optimal estimator is
simply E[Xt ], and the mean squared error is Var(Xt ). Then, the DP
equation can be easily updated as follows:

J∗(t, 0) = Var(Xt ) + J∗(t + 1, 0).

(2) When Et > 0, the DP equation can be written as

J∗(t, Et ) = inf
ft ,gt ,ht

E
{
(Xt − X̂t )2 + J∗(t + 1, Et+1)

}
= J∗(t + 1, Et ) + inf

ft ,gt ,ht
E

{
c(t, Et )Ut + (Xt − X̂t )2

}
.

(7)

Note that the minimization in the second line of (7) is just the
single-stage problem discussed in Section 3 with communication
cost c(t, Et ). This now motivates us to make the following two
assumptions.

Assumption 5. The sensor is restricted to apply the communica-
tion scheduling policies ft such that for any 1 ≤ t ≤ T and Et > 0,

E[Xt |Ut = 1, Et , Xt < 0] < E[Xt |Ut = 0, Et ]
< E[Xt |Ut = 1, Et , Xt > 0].

Assumption6. The encoder and the decoder are restricted to apply
piecewise affine policies:

gt (X̃t , Et ) =

{Stα(St ) (Xt − E [Xt |Ut = 1, Et , St ]) ,

if Ut = 1
0, if Ut = 0

ht (Ỹt , St , Et ) =

⎧⎪⎨⎪⎩
St

1
α(St )

γ

γ + 1
Ỹt + E [Xt |Ut = 1, Et , St ] ,

if Ut = 1
E[Xt |Ut = 0, Et ], if Ut = 0

where γ = PT/σ 2
V , α(St ) =

√
PT/Var(Xt |Ut = 1, Et , St ), and

Var(Xt |Ut = 1, Et , St ).
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Then, we have the following theorem on the optimality of
symmetric threshold-based communication scheduling strategy.
Its proof involves simply an application of Theorem 2, and hence
is not included here.

Theorem 4. Consider the problem with hard constraint under As-
sumption 1, 3, 5 and 6, the optimal communication scheduling policy
f ∗
t for the sensor is

f ∗

t (Xt , Et ) =

{
1, if Et > 0 and |Xt | > β∗

t (Et )
0, if Et = 0 or |Xt | ≤ β∗

t (Et )
(8)

where β∗
t (Et ) is non-negative and is the unique solution to the fixed-

point equation:

β2
=

1
γ + 1

G2
X (β) + c(t, Et ), β ≥ 0, (9)

where GX
(
β
)

= E
[
Xt |Xt > β

]
− β .

Remark 8. Themajor differences between the problem considered
in this paper and the problems considered in Gao et al. (2015a,
b) are as follows: In Gao et al. (2015a, b), we had restricted the
sensor to apply symmetric threshold-based policies and shown
that the optimal encoding and decoding policies are piecewise
affine. Furthermore, the results only hold for specific source and
noise densities (e.g., Laplace source and Gamma noisewith specific
parameters). In this paper, however, we restrict the encoder and
the decoder to apply piecewise affine encoding and decoding poli-
cies, and we show that under some weak technical assumptions
(Assumptions 2 and 5), the optimal communication scheduling
policy is symmetric and threshold-based. Moreover, the results
hold for a large class of source densities (e.g., general even and log-
concave densities).

Remark 9. Consider the case where Et > T − t , that is, the
sensor is always allowed to communicate with the estimator for
the remaining time steps. First, we note that the opportunity cost
c(t, Et ) is zero. Since GX (0) = E[X |X > 0] > 0, the solution to (9)
is not zero. Then, even though the sensor can always communicate
with the estimator, the optimal communication policy is still the
threshold-based policy with threshold β∗

t (Et ) > 0, which might
seem counter-intuitive: why would the sensor not transmit its
observation although it is allowed to do so? This surprising result
is due to the fact that threshold information, i.e., whether or not
the state sample belongs to a fixed, known interval, might bemore
informative than a noisy observation of the state at the output of
the noisy channel. Hence, it might be better not to communicate
explicitly over the noisy channel but rely on the side channelwhich
signals where the sample lies. For example, at the extreme case of
a very noisy channel (γ → 0) the output of the communication
channel, Ỹt , is effectively useless, irrespective of the realization
Xt . However, depending on the threshold and the realization Xt ,
thresholding information could be significantly more informative.

5. Numerical results

In this section,we present the numerical results for the problem
with hard constraint. We select the source density to be Laplace
density with parameter λ, i.e.,

pX (x) =

⎧⎪⎨⎪⎩
1
2
λe−λx, if x ≥ 0

1
2
λeλx, if x < 0.

Then, it is easy to see that

GX (β) = E[Xt |Xt > β] − β =
1
λ

, for all β ≥ 0.

Fig. 2. 100-stage estimation error vs. the number of communication opportunities.

Hence, the solution to (9) is

β∗

t (Et ) =

√
1

γ + 1
1
λ2 + c(t, Et ) =

√
m + c(t, Et ),

where m := 1/((γ + 1)λ2). Then, the optimal communication
scheduling policy is described by (8). Furthermore, the optimal
encoding/decoding policies (g∗

t , h∗
t ) are as follows:

gt (X̃t , Et ) =

{
α ·

(
|Xt | − β∗

t (Et ) − λ−1), if Ut = 1
0, if Ut = 0

ht (Ỹt , St , Et ) =

⎧⎪⎨⎪⎩
St ·

( 1
α

γ

γ + 1
Ỹt + β∗

t (Et ) + λ−1
)
,

if Ut = 1
0, if Ut = 0

where γ = PT/σ 2
V , and α =

√
PT/λ−2. By plugging the opti-

mal communication scheduling, encoding, and decoding policies
(f ∗
t , g∗

t , h∗
t ) into the DP equation (6), we obtain the explicit update

rule for the optimal cost-to-go J∗(t, Et ), as shown below:

J∗(t, Et ) = J∗(t + 1, Et ) + 2λ−2, if Et = 0
J∗(t, Et ) = J∗(t + 1, Et ) + 2λ−2

− 2
(
β∗

t (Et )λ
−1

+ λ−2)e−λβ∗
t (Et ), if Et > 0.

(10)

We choose the parameters as follows: T = 100, λ = 1, and the
signal-to-noise ratio (SNR) γ = 0.1, 1, 10. We solve the optimal
cost-to-go J∗(t, Et ) by applying the update rule (10). We have
plotted the optimal 100-stage estimation error J∗(1,N) versus the
number of communication opportunities N under different SNRs,
as shown in Fig. 2.

One can see that, for each fixed SNR, the optimal 100-stage
estimation error is non-increasing in terms of the number of
communication opportunities. To be more specific, there exists a
threshold on the number of communication opportunities (call it
opportunity threshold) such that the optimal 100-stage estimation
error decreaseswhen the number of communication opportunities
is below the threshold, and it stays constant above the threshold.
We call minimal error as the optimal 100-stage estimation error
with the number of communication opportunities above the op-
portunity threshold. One can also see from Fig. 2 thatwhen the SNR
increases, the opportunity threshold increases and the minimal
error decreases.

The existence of opportunity threshold was not observed in the
noiseless channel setting (see Imer and Başar, 2010, Figure 5). This
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Fig. 3. A sample path of the number of remaining communication opportunities vs.
time.

surprising phenomenon can be interpreted as follows: since the
sensor applies the threshold-based policy with threshold β∗

t (Et ) =
√
c(t, Et ) + m ≥

√
m, the expectation of the consumed commu-

nication opportunities is upper bounded by T · P(|Xt | ≥
√
m) =

Te−λ
√
m. When the number of communication opportunities is

greater than Te−λ
√
m, the additional communication opportunities

will not be consumed (in the expected sense), and thus the optimal
expected estimation error will not further decrease. It can also be
checked fromFig. 2 that the opportunity thresholds under different
signal-to-noise ratios are roughly Te−λ

√
m. Moreover, since m =

1
γ+1

1
λ2
, Te−λ

√
m

= Te−1/
√

γ+1, which is an increasing function of the
SNR γ . Hence, the opportunity threshold increases with the SNR.

Fig. 3 depicts a sample path of the number of remaining com-
munication opportunities versus time. When generating the plot,
we have chosen T = 100, λ = 1, γ = 0.1, and the number
of communication opportunities N = 50. One can see that the
communication opportunities are not used by the end of the time
horizon. The reason has been discussed in Remark 9.

When the number of communication opportunities is larger
than the opportunity threshold, the optimal estimation error does
not change with respect to the number of communication oppor-
tunities. Without loss of generality, we can assume that the sensor
is allowed to communicate at each step, that is, N = T . Then, the
opportunity cost c(t, Et ) = 0. Recall that β∗

t (Et ) =
√
c(t, Et ) + m

and m =
1

γ+1
1
λ2
. Hence, the update rule for the optimal-to-go can

be simplified as follows:

J∗(t, T ) = J∗(t + 1, T ) +
( 2
λ2 −

(2√m
λ

+
2
λ2

)
· e−λ

√
m)

with J∗(T + 1, T ) = 0, which implies that

J∗(1, T ) = T
( 2

λ2 −
(2√m

λ
+

2
λ2

)
· e−λ

√
m
)

= T 2λ−2 (
1 −

( 1
√
1 + γ

+ 1
)
· e

−
1√
1+γ

)
.

It is straightforward to check that J∗(1, T ) is a decreasing function
of the SNR γ . Hence, the minimal error decreases as the SNR
increases.

Plotting the opportunity threshold Te−λm versus minimal error
J∗(1, T ) under different SNRs (dash line) in Fig. 2, we arrive at
Fig. 4. One can see that the intersection between the dashed line
and each solid line is roughly the turning point of the solid line.
Therefore, the plot of opportunity threshold versus minimal error

Fig. 4. Opportunity threshold vs. minimal error under different signal-to-noise
ratios.

under different SNRs is an important one. In fact, the plot suggests
the lowest capacity of the battery that one should choose when
building a physical system so that the expected estimation error
is minimized. In addition, the plot predicts the minimal expected
estimation error.

Consider the asymptotic case where the SNR γ → ∞, and thus
m =

1
γ+1

1
λ2

→ 0. Then, the opportunity threshold Te−λm
→ T ,

and the minimal error J∗(1, T ) → 0. Hence, the optimal 100-
stage estimation error will be strictly decreasing in terms of the
number of communication opportunities in the asymptotic case, as
also noted in the prior work (see Imer and Başar, 2010, Figure 5).
Moreover, the estimation error will reach zero when the number
of communication opportunities is equal to the time horizon.

6. Conclusions

In this paper, we have considered a communication scheduling
and remote estimation problemwith a noisy communication chan-
nel. Under some technical conditions, we have obtained optimal
solutions for both soft-constrained and hard-constrained prob-
lems, which consist of a symmetric threshold-based communica-
tion scheduling strategy and a pair of piecewise affine encoding/
decoding strategies. Moreover, we have generated numerical re-
sults to illustrate the effect of the presence of channel noise.

There are several directions for future work. Here, we list five:
(1) In this paper, we assumed that the sensor is restricted to
apply the communication scheduling policy satisfying Assump-
tion 2. Under this assumption, we showed that without loss of
optimality, one can restrict the search of optimal communication
scheduling policy to the symmetric class. However, it is plausible
that this assumption can be relaxed or even removed, that is, for
any communication scheduling policy (which may or may not
satisfy Assumption 2), there exists a symmetric policy achieving
no greater costs. This possible extension is not immediate and
requires more effort. (2) Here, we considered the setting with a
noisy channel. It will be interesting to consider a more general
setting where there are two channels. One is noisy but not costly,
and the other one is perfect (has high communication quality)
but is costly. Then, at each time step, the sensor needs to choose
whether to transmit its observation or not. If the sensor chooses to
transmit its observation, it also needs to choose which channel it
will use. More details on this problem can be found in Gao et al.
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(2016c). (3) Here, the encoding power was taken to be time invari-
ant. What if the encoder can distribute its total encoding power
over the time horizon? More details on problems with power
allocation can be found in Gao et al. (2016a, b). (4) In this paper,
we considered a one-dimensional systemwith one sensor and one
estimator. It would be interesting to consider extensions to multi-
dimensional systems. To be more specific, the source input in that
case would be chosen from a multi-dimensional space. In order
to measure the source, we may need to place multiple sensors.
Each sensor may measure the source only in one dimension, and
different dimensions of the source are correlated. The sensors may
send their measurements to one estimator or multiple estimators,
which will produce estimate(s) on the source. Some related work
on this scenario can be found in Vasconcelos and Martins (2017)
and the references therein. (5) Finally, in this paper, the sensor’s
observations on the source were assumed to be perfect. It will
be interesting to consider a more general case where there is an
observation noise. Related works have been discussed in Han et al.
(2015), Wu et al. (2013) and You and Xie (2013).
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