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• Linear Phase FIR Design – Windowing Method
• Reading: Sect. 10.2.2 of Proakis & Manolakis
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Causal LP FIR Design – Truncated sinc Method
In practice, the best we can do is try to approximate the ideal LPF.  

…a simple approach is to  define the “b” coefficients in 
terms of a truncated shifted sinc function: 
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Some general insights
Longer lengths for the truncated impulse response:
• Gives “better” approximation to the ideal filter response
• Has steeper phase slope   Longer delay

Let’s see how well this method works…   These all have Linear Phase!
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N = 20
N = 60
N = 120

All cases for B = 0.6π

N is filter “order”
N + 1 is filter length



B=0.6*pi;
N=20;
n=0:N;h=(B/pi)*sinc((B/pi)*(n-N/2));

PI=fix(1000*pi)/1000;
omega=-PI:0.001:PI;
I = find(omega==0);
H=freqz(h,1,omega);
subplot(2,1,1)
hh=plot(omega/pi,abs(H));
set(hh,'linewidth',2)
hh=gca;
set(hh,'fontsize',14)
hold on
phi = unwrap(angle(H));
phi=phi-phi(I);

xlabel('\omega/\pi (Normalized DT Frequency)','fontsize',14)
ylabel('|H(\omega)|','fontsize',14)
grid
subplot(2,1,2)
hh=plot(omega/pi,phi);
set(hh,'linewidth',2)
hh=gca;
set(hh,'fontsize',14)
xlabel('\omega/\pi (Normalized DT Frequency)','fontsize',14)
ylabel('Unwrapped <H(\omega) (rad)','fontsize',14)
grid
hold on

< do similar things for N = 60  &  N = 120>

legend('N = 20','N = 60','N = 120')

MATLAB Code for Previous Plots
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This “truncated sinc” approach is a very simplistic approach and does not yield 
the best possible filters… as we can see even better in the dB plot below!

There are ways to make this design method better….

Passband looks… OK

Stopband… 
not so good!

Red: M = 30
Blue: M = 120 

For DT filters…  “always” plot in dB but “never” use a log frequency axis!



FIR Design – Windowed Truncation Method

The truncation method has some potential but does not give really good designs.

When we studied DFT processing of truncated signals we saw that tapered 
windows helped and they can help here too… for the very same reason!

Suppose you have a desired frequency response for which you’d like to design 
a realizable FIR filter: f ( )dH ω

The corresponding impulse response is: f1[ ] ( )
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This is likely to be non-causal as well as infinite in duration…

So… we apply a general window to a delayed version to get the FIR taps:

[ ] [ ] [ ]d dh n h n n w n= −

where w[n] is non-zero only over n = 0, 1, 2, …, M – 1  



Effect of Rectangular Window
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Convolution… causes smearing 
of the desired freq response

The thing that causes the smearing is the DTFT of the window function:

For the rectangular window used in the pure truncation version of this:
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To Compute @ π/2
Shift Window DTFT by π/2
Form Product
Integrate -π to π

Mainlobe Effect
• Smoothes Edges
• Widens Transition

Sidelobe Effect
“Leakage”

Sidelobe Effect
• Passband Ripple
• Stopband height



Increased Length Helps

• Mainlobe Gets Narrower as N↑
• Sidelobes “Get Lower” as N↑
• Height of Mainlobe = N
 Looks more like delta as N↑
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Window Shape Helps More
With the rectangular window the sidelobes are a problem… always 
no lower than -13 dB. Causes excessive stopband height!!

Hanning Window



Hanning Window DTFT

Hamming Window DTFT

Blackman Window DTFT



Rectangular Window FIR Design

Hamming Window FIR Design

Blackman Window FIR Design

Kaiser Window FIR Design

α = 4

Filter Length M = 61



>> help fir1
fir1   FIR filter design using the window method.

B = fir1(N,Wn) designs an N'th order lowpass FIR digital filter and returns the filter coefficients in 
length N+1 vector B.

The cut-off frequency Wn must be between 0 < Wn < 1.0, with 1.0 corresponding to half the sample 
rate.  The filter B is real and  has linear phase.  

The normalized gain of the filter at Wn is  -6 dB.

B = fir1(N,Wn,'high') designs an N'th order highpass filter.

If Wn is a two-element vector, Wn = [W1 W2], with W1 < W2. 
B = fir1(N,Wn,‘bandpass') will design a bandpass filter.

B = fir1(N,Wn,'stop') will design a bandstop filter.

If Wn is a multi-element vector, Wn = [W1 W2 W3 W4 W5 ... WN], gives order N multiband filter
B = fir1(N,Wn,'DC-1') makes the first band a passband.

B = fir1(N,Wn,'DC-0') makes the first band a stopband.

B = fir1(N,Wn,WIN) designs an N-th order FIR filter using the N+1 length vector WIN to window the 
impulse response.

If empty or omitted, fir1 uses a Hamming window of length N+1.

Hamming is Default!

MATLAB fir1
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