
Note Set #1
• Introduction
• Reading Assignment: Ch. 1 of Proakis & Manolakis
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• Modern systems generally…
– get a continuous-time signal from a sensor
– a cont.-time system modifies the signal
– an “analog-to-digital converter” (ADC or A-to-D) sample the signal to 

create a discrete-time signal … a “stream of numbers”
– A discrete-time system to do the processing 
– and then (if desired) convert back to analog (not shown here)

DSP Scenario

Sensor
Analog

Electronics
ADC DSP

Physical 
C-T

Signal

Electrical 
C-T

Signal

Electrical 
C-T

System
Electrical 

C-T
Signal

Electrical  
D-T

Signal

Electrical 
D-T

System
Electrical 

D-T
Signal

x(t)

t

x[n]

n

DAC

C-T
Signal

y[n]

n

y(t)

t

2/13



• Our focus will be on
– Sampling theory
– Frequency-Domain Models for DT Signals
– Frequency-Domain Models for DT Systems
– Processing structures for implementing DSP systems
– Methods for designing DSP systems

Ensures that samples are 
equivalent to CT signal

Provides math to 
understand HOW

the DSP works

Gives practical 
ways to MAKE

DSP work

• Section 1.2 Classification of Signals
– Multichannel vs. Single Channel
– CT vs DT
– Discrete-Valued vs Continuous-Valued
– Random vs Deterministic
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Transforms & Notation
Fourier Transform for  DT Signals
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Discrete Fourier Transform for  DT Signals
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Discrete Fourier Transform

Fourier Transform for  CT Signals
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Z Transform for  DT Signals
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Inverse ZT done using partial 
fractions & a ZT table

Set z = ejω

Proakis & Manolakis don’t use this superscript 
Notation.  I borrowed it from Porat’s DSP Book

4/13



Difference
Equation

Transfer
Function

Frequency
ResponseImpulse 

Response

Block
Diagram

Pole/Zero
Diagram

DTFT

ZT

ZT   (Theory)
Inspect  (Practice)

Inspect Inspect Roots

Unit Circle
z = ejω

Time Domain Z / Freq Domain

Discrete-Time System Relationships

h[n]

p
p

q
qz

zaza

zbzbb
zH

−−

−−

+++

+++
=





1
1

1
10

1
)(

f ( ) ( ) | j
z

z e
H H z ωω

=
=

1 0

[ ] [ ] [ ]
p q

i i
i i

y n a y n i b x n i
= =

= − − + −∑ ∑

5/13



T is the Period in seconds (actually seconds/cycle) of the sinusoid…
to is a time shift… it is related the phase φ

Sinusoidal Time Function
A sinusoid is completely defined by its three parameters:

• Amplitude A (for us typically in volts or amps but could be other unit)
• Frequency Fo in Hz
• Phase φ in rad  (not degrees!)

( ) sin(2 )ox t A F tπ φ= +

(rad/cycle) × (cycle/sec) ×sec + rad = rad(Similar for cosine)

1 / oT F=
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Complex Sinusoidal Time Function

(2 ) (2 )( ) cos(2 )
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In many cases it is desirable to write a real-valued sinusoid in terms of 
“complex-valued sinusoids”.  This is a math trick that – believe it or not! –
makes things easier to work with!!!

This comes from Euler’s Formula:
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(2 ) (2 )( ) cos(2 )
2

o oj F t j F t
o
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Exploring the Complex Sinusoidal Terms

Two complex values with 
opposite angles

Re

Im (2 )oj F te π φ+

(2 ) ( 2 )o oj F t j F te eπ φ π φ− + − −=

Rotate opposite directions… due to negative sign

Imaginary part always cancels!

http://www.cic.unb.br/~mylene/PSMM/DSPFIRST/chapters/2sines/demos/phasors/graphics/phasorsn.mov
Here is a link to a Quicktime movie of these rotating…

Link to another Web Demo of this…

1. Open the web page

2. Click on the box at the top labeled Two

“Positive Frequency” Term

“Negative Frequency” Term
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Sampling Sinusoids… DT Sinusoids

Sensor
Analog

Electronics ADC Digital Elec.
(Computer) DAC

Optional

x[n] is just a stream 
of numbers

x(t)

t

ADC Clock sets how 
often samples are taken

How closely should the samples be spaced??

x[n]

n

At first thought we might think we need to have the samples still “look like” 
the original sinusoid…  But that turns out to be excessive, as our theory will 
show eventually show.  
Looking at the samples x[n] above they don’t quite really look like a 
sinusoid… yet they are taken at a rate suitable for most applications!

So… how do we determine how fast we need to sample???
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t (sec)

t (sec)

t (sec)

DT Samples….  What CT Sinusoid did they come from????

They could have come from this blue one…

But…They could have come from this RED one!!!
Thus… if we 
want to be able 
to tell these two 
apart we need to 
sample faster!!
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Let Ts be the time spacing between samples…  Then Fs = 1/Ts as the “sampling 
frequency” in samples/sec.

Then if we have a CT sinusoid x(t) = cos(2πfot) that is sampled we have
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So… a DT frequency > π rad/sample looks exactly like 
some other frequency < π.  This is called “Aliasing”.
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So to avoid this “aliasing” when sampling a CT sinusoid to make a DT sinusoid 
we must require that:

2
s

o
FF < 22

sF

o
sF

ω π π< =

Thus… for “proper sampling” we need to choose our sampling rate to be 
more than double the highest frequency we expect!!!
Aside: This is consistent with some real-world facts you may know about:

• High-Fidelity Audio contains frequencies up to only about 20 kHz
• CD digital audio has a sampling frequency of Fs = 44.k Hz > 2x20kHz

From textbook by 
Proakis & Manolakis

rad/samplecycle/sample

cycle/second
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